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RESUMO

Nesse trabalho estudamos a propagação da luz em estruturas fotônicas induzidas
por luz em um meio do tipo Kerr. Começa-se com uma revisão das equações de
Maxwell, em seguida é abordado a equação de Helmholtz, a interação átomo-campo
descrita pelas equações de Bloch e o sistema de dois níveis atomicos. Em seguida, é
explorada a propagação de feixes de luz em meios não lineares utilizando o método de
propagação de feixes por passos divididos (SSBPM), com foco em meios tipo Kerr. O
estudo culmina na análise dos efeitos de autofocalização e autodesfocalização por meio
de simulações em python usando o SSBPM. Na segunda parte, o trabalho se concentra
na espectroscopia atômica de Rydberg em átomos de césio em células volumétricas e
célula de espessura nanometrica. É apresentada uma descrição detalhada do sistema
atômico e do aparato experimental utilizado. São discutidos os níveis atômicos do césio
e o esquema espectroscópico empregado. O setup experimental é explicado, incluindo
métodos para medição de espessura e aquisição de dados com escala de frequência.
O estudo experimental tem foco na investigação da redistribuição de velocidade em
átomos excitados de césio por meio de colisões e interações com átomos de Rydberg
dentro de células nanométricas. Resultados obtidos tanto em células volumétricas
quanto em células finas são apresentados, destacando variações na potência de
bombeamento, densidade e frequência. Este trabalho integra estudos teóricos sobre
a propagação da luz em estruturas fotônicas com investigações experimentais em
espectroscopia atômica, demonstrando uma exploração abrangente de fenômenos
ópticos e atômicos.

Palavras-chaves: Propagação da luz; meio tipo kerr; espectroscopia de Rydberg;
redistribuição de velocidade; átomos de césio.



ABSTRACT

In this work we studied the propagation of light in photonic structures induced by light in a
Kerr-type medium. It begins with a review of Maxwell’s equations, follow on the Helmholtz
equation, atom-field interaction described by Bloch equations, and the two-level atomic
system. Next, the propagation of light beams in nonlinear media is explored using the
Split Step Beam Propagation Method (SSBPM), with a particular emphasis on Kerr-type
media. The study culminates in the analysis of self-focusing and self-defocusing effects
through Python simulations using SSPBM.In the second part, the focus shifts to atomic
Rydberg spectroscopy in cesium atoms within volumetric and nanometric-thin cells.
A detailed description of the atomic system and experimental apparatus is provided.
Cesium atomic levels and the employed spectroscopic scheme are discussed. The
experimental setup is explained, including methods for thickness measurement and
data acquisition with frequency scaling. The experimental study investigates velocity
redistribution in excited cesium atoms through collisions and interactions with Rydberg
atoms within nanometric cells. Results obtained from both volumetric and thin cells
are presented, highlighting variations in pumping power, density, and frequency.This
work integrates theoretical studies on light propagation in photonic structures with
experimental investigations in atomic spectroscopy, demonstrating a comprehensive
exploration of optical and atomic phenomena.

Keywords: Light propagation; kerr media; rydberg spectroscopy; velocity redistribution;
cesium atoms.



LIST OF FIGURES

Figura 1 – Two level system scheme . . . . . . . . . . . . . . . . . . . . . . . . 20
Figura 2 – Dependence of (a) the absorption coefficient and (b) the index of

refraction with the frequency ω in arbitrary units. . . . . . . . . . . . 22
Figura 3 – Transverse profile of a Gaussian beam over small propagation distan-

ces ∆z. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Figura 4 – Flow diagram for the beam propagation method. . . . . . . . . . . . 25
Figura 5 – Auto-focus and auto-defocus effects. . . . . . . . . . . . . . . . . . . 27
Figura 6 – (a) is the initial field profile, and after propagation we can get the

autofocus effect (b) for positive n2 values and (c) with the auto defocus
for negative n2 values. . . . . . . . . . . . . . . . . . . . . . . . . . . 29

Figura 7 – Bragg’s Law Illustration . . . . . . . . . . . . . . . . . . . . . . . . . 32
Figura 8 – Examples of Photonic Crystals Found in Nature . . . . . . . . . . . . 33
Figura 9 – Photonic crystal (a) one-dimensional, (b) two-dimensional, (c) three-

dimensional. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Figura 10 – Opical fibre with a Bragg grating. . . . . . . . . . . . . . . . . . . . . 34
Figura 11 – Band structure of the one-dimensional photonic crystal. . . . . . . . 39
Figura 12 – Photonic crystals in 3 dimensions created in Python simulations . . 40
Figura 13 – The distribution of the electric field intensity ∥E∥ along the z-axis in

arbitrary units, showing the spatial evolution of the Gaussian beam
through the atomic vapor medium. . . . . . . . . . . . . . . . . . . . 43

Figura 14 – Variation of the refractive index n(z) along the z-axis in arbitrary units.
The oscillation of the refractive index indicates the presence of a
spatial modulation that influences the beam propagation. . . . . . . 44

Figura 15 – Temporal and Spatial Evolution of a Gaussian Beam through a Bragg
Grating The two bright diagonal lines indicate the presence of two
light beams. The more intense beam, which appears brighter, is the
transmitted beam, while the less intense beam is the reflected beam. 45

Figura 16 – 3D visualization of Gaussian beam propagation transmitted and re-
flected within an atomic vapor containing a Bragg grating. The two
bright diagonal lines indicate the presence of two beams of light. The
most intense beam, which appears brightest, is the transmitted beam,
while the least intense beam is the reflected beam. . . . . . . . . . . 46

Figura 17 – Potential curves of the collision pair AB and A∗B. . . . . . . . . . . . 51
Figura 18 – Shift and broadening of a spectral line by collisions. . . . . . . . . . 52



Figura 19 – The simplified energy level diagram of Na. Levels 1 and 2 are the
3S1/2, F = 1 and F = 2 ground-state levels, respectively. Levels 0
and 3 are the resonant and the nonresonant 3P excited-state fine-
structure levels, respectively. The 32P hyperfine splitting has been
neglected. The level numbering is chosen in such a way that level 0
is the 3P1/2 level for D1 excitation and the 3P3/2 level for D2 excitation. 56

Figura 20 – Cesium D1 transition hyperfine structure, with frequency splittings
between the hyperfine energy levels. . . . . . . . . . . . . . . . . . . 65

Figura 21 – Vapor pressure of cesium from equations 138 and 139. . . . . . . . 66
Figura 22 – Vapor pressure of cesium from equations 138 and 139. . . . . . . . 67
Figura 23 – Step-wise excitation scheme for probing Rydberg state. Pumping

from 6S1/2(F = 3) → 6P1/2(F = 4) at 894 nm and probing 6P1/2(F =

4, 3)− → nS1/2, nD33/2(n = 15− 18) at 507 - 513 nm. . . . . . . . . . 68
Figura 24 – Normalized 6P1/2 → 15D3/2 absorption spectra. The directly pumped

hyperfine component always presents a peak at vz = 0 due to the
velocity selection of the pump. The hyperfine component that is not
directly pumped presents either a peak (for 6S1/2(F = 4) → 6P1/2(F =

4) or 6S1/2(F = 3) → 6P1/2(F = 3) pumping) or a dip (for 6S1/2(F =

4) → 6P1/2(F = 3) or 6S1/2(F = 3) → 6P1/2(F = 4) pumping). . . . . 69
Figura 25 – Simplified experimental setup with a volumetric cell and thincell . . . 70
Figura 26 – Excitation scheme of the lasers involved in our experiment. Focusing

on pumps lasers that, despite having the same wavelength, are tuned
to different transition frequencies. . . . . . . . . . . . . . . . . . . . . 71

Figura 27 – Scheme of the cesium volumetric vapour cell. The cell is inside an
oven whose temperature we divide between T up and T down, where
Tup > Tdown, where Tdown is the temperature that governs the
density of Cs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

Figura 28 – Shape of the cesium vapour thin cell. . . . . . . . . . . . . . . . . . . 72
Figura 29 – Scheme of the cesium vapor thin cell. . . . . . . . . . . . . . . . . . 73
Figura 30 – Transmission path of a near normal incident beam (1) through the thin

cell which acts as a low finesse Fabry–Pérot interferometer. Beams
indicated by (2) and (3) are the reflected beams from the first window
and the thin cell respectively. α << 1 is the incident angle which has
been deliberately upscaled in the figure for convenience. . . . . . . . 73

Figura 31 – Reflectance Rc as a function of cell thickness (d) (red line: 894 nm,
green line: 513 nm). The straight line shows the value of measured
reflectance. By using two different wavelengths, we can pinpoint the
cell thickness to be 583 ± 2,5 nm. . . . . . . . . . . . . . . . . . . . . 74



Figura 32 – In black, linear absorption of iodine to the wavelength of 512.089 nm
to create a frequency scale and in red linear absorption of volumetric
cell 6P1/2 → 16S1/2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

Figura 33 – Saturated absorption scheme: an atom with velocity ν in a laboratory
frame experiences the Doppler Effect, because, when it is in motion,
it "perceives"the laser frequency differently. . . . . . . . . . . . . . . 77

Figura 34 – Saturated Absorption Setup in our experiment, the arrows inside the
cell indicate the different velocities of atoms in atomic vapor. The
strong beam is indicated by the letter F and the weak beam indicated
by the letter P. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

Figura 35 – Linear absorption spectrum of cesium for the atomic transition from
61/2 (F = 4) to 6P1/2 (F = 4) and to 15D3/2, varying the power of the
pump beam (894nm). . . . . . . . . . . . . . . . . . . . . . . . . . . 81

Figura 36 – Linear absorption spectrum of cesium for the atomic transition from
61/2 (F = 3) to 6P1/2 (F = 4) and to 15D3/2, varying the power of the
pump beam (894nm). . . . . . . . . . . . . . . . . . . . . . . . . . . 82

Figura 37 – Linear absorption spectrum of Cesium for the atomic transition from
6S1/2(F = 3) to 6P1/2(F = 4) and to 15D3/2, varying the power of the
pump beam and normalized on de 1° subdoppler component . . . . 83

Figura 38 – Linear absorption spectrum of Cesium for the atomic transition from
6S1/2 (F = 4) to 6P1/2 (F = 4) and to 16S1/2, at high densities and
varying the Temperature of the Volumetric Cell. . . . . . . . . . . . . 84

Figura 39 – collisional broadening as a function of the caesium pressure for the
transition to (6S1/2) (F = 4) to state (6P1/2) (F = 4) and subsequently
to state (16S1/2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

Figura 40 – Collisional shift as a function of the cesium pressure for the transition
to (6S1/2) (F = 4) to state (6P1/2) (F = 4) and subsequently to state
(16S1/2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

Figura 41 – Linear absorption spectrum of Cesium for the atomic transition from
6S1/2(F = 4) to 6P1/2(F = 4) and to 15D3/2, at high densities and
varying the Temperature of the Volumetric Cell. . . . . . . . . . . . . 87

Figura 42 – Collisional broadneing as a function of the caesium pressure for the
transition to (6S1/2) (F = 4) to state (6P1/2) (F = 4) and subsequently
to state (15D3/2). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

Figura 43 – Saturated absorption spectrum of Cesium to create a frequency scale,
where we visualize the 6S1/2(F = 4) to 6P1/2(F = 3) transition on the
left and the S1/2(F = 4) to 6P1/2(F = 4) transition on the right . . . . 89

Figura 44 – Saturated absorption spectrum of Cesium to create a frequency scale,
where the laser is tuned at transition 6S1/2(F = 4) to 6P1/2(F = 4). . 90



Figura 45 – Linear absorption spectrum of Cesium for the atomic transition nor-
malized 6P1/2− > 15D3/2 absorption spectra for Pump frequency,
on the pump frequency on resonance (Black) when ωIR = ω0, pump
frequency ωIR = ω0-δ (Blue) and pump frequency ωIR = ω0+δ (Red). 91

Figura 46 – Signal not normalized 6P1/2 → 15D3/2 thin cell transmission spectra
for various cell thicknesses L at the same cesium vapour pressures . 92

Figura 47 – Signal not normalized 6P1/2 → 15D3/2 thin cell transmission spectra
for spectrum for smaller cell thicknesses L at the same cesium vapour
pressures. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93



LIST OF TABLES

Tabela 1 – Green frequency centered on the reference in MHz . . . . . . . . . . 75
Tabela 2 – Green frequency centered on the reference in MHz . . . . . . . . . . 75



LIST OF EQUATIONS

Equation (1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Equation (2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Equation (3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Equation (4) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Equation (5) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Equation (6) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Equation (7) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Equation (8) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Equation (9) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Equation (10) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Equation (11) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Equation (12) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Equation (13) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Equation (14) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Equation (15) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Equation (16) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Equation (17) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Equation (18) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Equation (19) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Equation (20) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Equation (21) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Equation (22) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Equation (23) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Equation (24) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Equation (25) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Equation (26) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Equation (27) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Equation (28) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Equation (29) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Equation (30) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Equation (31) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Equation (32) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Equation (33) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Equation (34) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Equation (35) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Equation (36) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Equation (37) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Equation (38) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21



Equation (39) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Equation (40) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Equation (41) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Equation (42) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Equation (43) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Equation (44) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Equation (45) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Equation (46) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Equation (47) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Equation (48) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Equation (49) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Equation (50) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Equation (52) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Equation (53) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Equation (54) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Equation (55) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Equation (56) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Equation (57) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Equation (58) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Equation (59) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Equation (60) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Equation (61) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Equation (62) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Equation (63) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Equation (64) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Equation (65) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Equation (66) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Equation (67) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Equation (68) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Equation (69) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Equation (70) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Equation (71) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Equation (72) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Equation (73) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Equation (74) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Equation (75) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Equation (76) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Equation (77) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Equation (78) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36



Equation (79) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
Equation (80) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
Equation (81) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
Equation (82) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
Equation (83) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
Equation (84) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
Equation (85) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
Equation (86) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
Equation (87) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
Equation (88) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
Equation (89) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
Equation (90) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
Equation (91) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
Equation (92) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
Equation (93) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
Equation (94) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
Equation (95) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
Equation (96) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
Equation (97) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
Equation (98) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
Equation (99) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
Equation (100) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
Equation (101) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
Equation (102) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
Equation (103) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
Equation (104) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
Equation (105) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
Equation (106) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
Equation (107) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
Equation (108) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
Equation (109) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
Equation (110) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
Equation (111) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
Equation (112) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
Equation (113) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
Equation (114) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
Equation (115) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
Equation (116) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
Equation (117) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59



Equation (118) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
Equation (119) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
Equation (120) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
Equation (121) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
Equation (122) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
Equation (123) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
Equation (124) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
Equation (125) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
Equation (126) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
Equation (127) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
Equation (128) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
Equation (129) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
Equation (130) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
Equation (131) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
Equation (132) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
Equation (133) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
Equation (134) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
Equation (138) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
Equation (139) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66



TABLE OF CONTENTS

1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2 REVIEW OF MAXWELL’S EQUATIONS AND INTERACTION WITH
MATERIAL MEDIA . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.1 Introduction To Maxwell’s Equations . . . . . . . . . . . . . . . . . 16
2.2 Helmhotz Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.3 Atom-Field Interaction And Bloch Equations . . . . . . . . . . . . 20

3 PROPAGATION OF LIGHT BEAMS IN NONLINEAR MEDIA . . . . 23
3.1 Split Step Beam Propagation Method . . . . . . . . . . . . . . . . . 23
3.2 Kerr Media . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.3 Photonic crystals . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.4 Simulations results . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4 STUDY OF THE VELOCITY REDISTRIBUTION OF EXCITED ATOMS
IN CESIUM RYDBERG ATOM SPECTROSCOPY . . . . . . . . . . . 47

4.1 Rydberg Atoms and their Properties . . . . . . . . . . . . . . . . . 47
4.2 Collisional broadening and Collisional shift . . . . . . . . . . . . . 50
4.3 Velocity redistribution . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.3.1 Generalized Bloch Equations . . . . . . . . . . . . . . . . . . . . . . . 56
4.3.2 Rate Equations for Velocity Distributions . . . . . . . . . . . . . . . . 58
4.3.3 Rate of Relaxation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.3.4 The Keilson-Storer Kernel . . . . . . . . . . . . . . . . . . . . . . . . 60

5 DESCRIPTION OF THE ATOMIC SYSTEM AND EXPERIMENTAL
SETUP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5.1 Cesium atomic sistem and levels . . . . . . . . . . . . . . . . . . . 63
5.2 Pressure effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
5.3 Rydberg states and spectroscopic scheme . . . . . . . . . . . . . 67
5.4 Experimental setup . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
5.4.1 Thickness measurement . . . . . . . . . . . . . . . . . . . . . . . . . 72
5.5 Data acquisition and Frequenccy scale . . . . . . . . . . . . . . . 75
5.6 Saturated Absorption . . . . . . . . . . . . . . . . . . . . . . . . . . 76

6 EXPERIMENTAL STUDY OF VELOCITY REDISTRIBUTION IN EX-
CITED CESIUM ATOMS VIA COLLISION AND INTERACTION OF
RYDBERG ATOMS WITH NANOMETRIC CELLS . . . . . . . . . . . 80



6.1 Results Volumetric Cell . . . . . . . . . . . . . . . . . . . . . . . . . 80
6.1.1 Pump Power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
6.1.2 Varying the density . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
6.1.3 Varying the frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
6.2 Results Thincell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

7 CONCLUSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97



14

1 INTRODUCTION

The propagation of light in nonlinear media is a research field with applications in
various areas of optics and photonics (Santos, 2009). One phenomenon we can mention
is the interaction of light with Kerr-type media (MELO, Rosália Luana de Oliveira Silva
et al, 2022) and (Gouveia, 2016), where the refractive index varies with the intensity of
the incident light. This nonlinear behavior of the refractive index can lead to interesting
effects such as the formation of optical solitons and is crucial for the development
of photonic devices with controllable functionalities. In this first part of our work, we
explore the principle of refractive index variation in Kerr-type media. When a light beam
interacts with such a medium, intensity variations of the beam cause corresponding
modulations in the refractive index of the medium (Lopes, 2012). This phenomenon,
known as self-focusing, is a classic example of how light intensity can induce physical
modifications in a nonlinear medium.

The study of light propagation in light-induced media has significant implications
in various areas of optics and photonics. The ability to manipulate light trajectory and
modify medium characteristics according to light intensity provides a basis for the
creation of light modulation devices (Pedrola, 2015), optical routing (Maldonado; Junior,
1991), and even applications in quantum information processing (??). In this context,
the use of atomic vapors as nonlinear media is particularly interesting.

An approach following this line of thought is the use of atomic vapors as nonlinear
media for light propagation (Rodrigues et al., 2022). The nonlinear behavior of these
vapors, such as those that exhibit Raman-Nath transitions (??), has been exploited to
create light-induced refractive index modulations. Kash and Boyd (Paul et al., 2002)
conducted pioneering studies on nonlinear refractive resonance in atomic vapors,
highlighting the ability to control light propagation through interaction with these media.
Additionally, Boyd and Gauthier (Boyd; Gauthier, 2010) also explored methods to control
the speed of light pulses using nonlinear media, demonstrating the possibilities of
precisely manipulating the properties of light in photonic systems.

In the second part of this work, we will explore spectroscopy in volumetric and
nanometric cesium vapor cells, focusing on the study of the velocity redistribution of
excited atoms. We will use the Rydberg absorption spectroscopy technique to observe
with high resolution the excited states in the D1 line of cesium atoms, 6S1/2 → 6P1/2,
where through the D1 line we go to the Rydberg states 16S1/2 and 15D3/2.

In such atoms, the valence electron is mainly influenced by the positive charge of
the ionic core rather than its structure. The excited states of these hydrogen-like atoms
are called "Rydberg states"(NADA, a). Rydberg states are interesting for two reasons.
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First, they are large and weakly bound, leading to peculiar properties. Second, much of
their atomic structure and behavior in external fields can be understood based on direct
extensions of hydrogenic theory.

The study of Rydberg atoms has seen significant experimental advances and
renewed interest in recent years. This is because laser light provides a simple and
precise method to produce relatively large populations in specific Rydberg states
(Beterov et al., 2008). A central aspect of this investigation is the collisional broadening
and shift of spectral lines, resulting from interactions between atoms and between atoms
and the cell walls. These phenomena are crucial for understanding how collisions affect
the velocity redistribution of excited atoms (Haverkort; Woerdman, 1990), influencing
spectroscopic measurements.

Additionally, we will analyze the cesium atomic systems and levels, providing a
detailed view of the electronic transitions leading to the formation of Rydberg states
(NADA, a). Our focus will be on the effects of cesium pressure, which can modify spectral
characteristics due to variations in the density of atoms in the vapor. To investigate the
Rydberg states and their spectroscopic schemes, we will use an experimental setup
designed to accommodate both volumetric and nanometric cell experiments. This setup,
described in chapter 4, includes 894 nm and 512-513 nm lasers to excite the atoms,
sensitive detectors to capture spectroscopic signals, and a data acquisition system to
monitor and record variations in the frequencies and intensities of spectral lines.

Data will be acquired under different experimental conditions presented in chapter
6 of this work, where we have results varying the pump beam power, atomic density,
and excitation frequency. In volumetric cells, we will study how these variables affect
the velocity redistribution and the shape of spectral lines. In nanometric cells, we will
investigate how cell thickness influences these same parameters, offering results on
the behavior of cesium atoms in extremely small confinements. The expected results
include the observation of significant changes in the velocity redistribution of excited
atoms (Kolchenko et al., 1973), depending on cell thickness and experimental conditions.
These results will contribute to a deeper understanding of the fundamental processes
governing Rydberg spectroscopy in different environments and provide valuable data
for future research and technological applications.
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2 REVIEW OF MAXWELL’S EQUATIONS AND INTERACTION WITH MATERIAL
MEDIA

In this chapter, we will explore Maxwell’s equations in detail regarding their
interaction with material media. We will focus on the dielectric and magnetic properties
of materials, introducing the necessary concepts to address wave propagation based on
Maxwell’s equations formulated by James Clerk Maxwell in the 19th century. Additionally,
we’ll discuss a semi-classical model for atom-light interaction (Jackson, 2021).The
nonlinear response to electromagnetic waves is characterized by the susceptibility (χn)
of the medium, where "n"can take values such as 2 for second-order nonlinear effects
(e.g., second harmonic generation (Kleinman, 1962) and 3 for third-order effects (e.g.,
four-wave mixing (Silva, 2023)), and so on.

2.1 INTRODUCTION TO MAXWELL’S EQUATIONS

To begin describing wave propagation, we need to discuss light propagation in a
nonlinear medium. Electromagnetic phenomena are described by Maxwell’s equations,
which consist of four partial differential equations that underpin the fundamental princi-
ples of electromagnetism. In the absence of sources, free currents, and magnetization,
these equations are given by:

∇× E = −∂B
∂t

(1)

∇×B = µ0
∂D

∂t
(2)

∇ ·B = 0 (3)

∇ ·D = 0 (4)

The interaction between electromagnetic fields and material media is crucial for
a deeper understanding of electromagnetic phenomena. As these fields pass through
materials, they influence the electrical and magnetic properties of the material. Dielectric
materials are electrical insulators that, when subjected to electric fields, experience elec-
trical polarization. The relationship between electric fields (E) and electric displacement
fields (D) is expressed through the electric susceptibility ε:

D = εE (5)



17

Here, ε represents the electric permittivity of the medium. Magnetic materials
respond to magnetic fields with magnetization, The relationship between magnetic fields
(B) and magnetic field intensity (H) is influenced by the magnetic susceptibility χm:

B = µH (6)

Here, µ denotes the magnetic permeability of the medium, and µr = 1 + χm

is the relative permeability of the material. The introduction of electric and magnetic
susceptibilities modifies Maxwell’s equations, turning them into powerful tools for un-
derstanding the interaction between electromagnetic fields and material media. These
modifications reflect how materials respond to electric and magnetic fields, leading to
electrical polarization and magnetization.

2.2 HELMHOTZ EQUATION

To derive the wave equation for the electric field, we take the curl of Equation 1.
Using the fact that ∇ · E = 0, we obtain:

∇× (∇× E) = −∇× ∂B

∂t
(7)

Applying the vector identity ∇× (∇× E) = ∇(∇ · E) −∇2E and knowing that
∇ · E = 0, we have:

−∇2E = − ∂

∂t
(∇×B) (8)

Substituting Equation 2 into the above equation, we obtain:

−∇2E = −µ0
∂2D

∂t2
(9)

Since D = εE, the equation becomes:

∇2E = µ0ε
∂2E

∂t2
(10)

Defining the speed of light in a vacuum as c = 1√
µ0ε

, we obtain the wave equation
for the electric field:

∇2E− 1

c2
∂2E

∂t2
= 0 (11)

For the magnetic fields, a similar derivation shows that they also satisfy the same
wave equation:

∇2B− 1

c2
∂2B

∂t2
= 0 (12)
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Therefore, both the electric and magnetic fields satisfy the same wave equation,
reflecting the intertwined nature of electromagnetic wave propagation in space. However,
in terms of magnitude, the electric field dominates over the magnetic field, as E = cB.
For this reason, it is common to represent a light field solely by E(r, t).A conventional
approach to analyzing light is to start with single-frequency (monochromatic) and linearly
polarized wave fields. Thus, the electric field can be expressed as:

E(r, t) = E0 cos(ωt− k · r+ ϕ) (13)

In Equation 13, ω is the oscillation frequency, E0 is the amplitude of the electric field, k
is the wave vector, and ϕ is the initial phase. Substituting Equation 13 into Equation 11,
we obtain the equation describing the propagation of monochromatic light, known as
the vector Helmholtz equation:

∇2E+ k2E = 0 (14)

where k = ω
c

is the magnitude of the wave vector. For reasons that will become evident
later, we consider linearly polarized light fields. This implies that we can represent the
complex field from Equation 13 as follows:

E(r, t) = a · Re{E(r)e−iωt} (15)

Here, a is a constant vector defining the polarization direction of light, and E(r) is the
complex amplitude of the electric field. Therefore, despite the vector nature of light, we
can treat it in a scalar manner. In general, E(r) can be expressed in terms of two real
functions: the amplitude u(r) and the phase ϕ(r), as follows:

E(r) = u(r)eiϕ(r) (16)

Here, u(r) represents the real amplitude, and ϕ(r) represents the real phase
angle of the complex amplitude E(r). It’s important to note that the magnitude of the
electric field is given by |E(r)| = u(r). The optical intensity I(r, t), defined as the optical
power per unit area, is proportional to the temporal average of the square of the wave
function:

I(r, t) = ⟨|E(r, t)|2⟩ ∝ |E(r)|2 = u2(r) (17)

This temporal average is calculated over a significantly longer time interval than the
optical period but relatively short compared to other relevant timescales. For a monoch-
romatic plane wave propagating in vacuum, it can be shown that the optical intensity
I(r, t) is related to the electric field as follows:

I(r, t) = cϵ0E(r, t)
2 (18)
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where c is the speed of light in vacuum and ϵ0 is the vacuum permittivity. This
relation holds for a plane wave in vacuum, where the temporal dependence of the electric
field is sinusoidal. For the time-averaged optical intensity, considering the oscillatory
nature of the electric field and assuming a monochromatic wave, we can express the
intensity in terms of the complex amplitude of the electric field:

I(r) =
1

2
cϵ0|E(r)|2 (19)

Here, the factor 1
2

arises from the time averaging of the square of the sinusoidal electric
field. This result shows that the optical intensity is proportional to the square of the
electric field amplitude for a monochromatic plane wave in vacuum. Therefore, we
recognize that the modulus of the complex amplitude is directly related to the optical
intensity, a physically measurable quantity. Although the Helmholtz equation can be
separated into 11 coordinate systems, separability into transverse and longitudinal parts
is possible only in Cartesian, circular cylindrical, parabolic cylindrical, and elliptical
cylindrical coordinates (Conway; Cohl, 2010). The variation of the envelope U(r) and its
derivative with respect to z must be smooth over the extent of a wavelength λ = 2π/k,
allowing the slowly varying envelope approximation to hold. Thus, the paraxial Helmholtz
equation can be written as:

∇2
⊥U + 2k

∂U

∂z
(i− 1) = 0 (20)

Here, ∇2
⊥ is the transverse Laplacian operator. Assuming a smooth variation of U(r)

with respect to z, over a distance ∆z = λ, the variation ∆U(r) along z is much smaller
compared to U(r) itself, that is:

∂U

∂z
≪ kU (21)

and, consequently:
∂2U

∂z2
≪ k

∂U

∂z
(22)

Thus, the second term in the original equation can be neglected, resulting in the correct
paraxial Helmholtz equation:

∇2
⊥U − 2ik

∂U

∂z
= 0 (23)

This equation is recognized as the paraxial Helmholtz equation. In the following
sections, we will address the first four types of beams mentioned in this section. Solutions
leading to Gaussian, Hermite-Gaussian, and Laguerre-Gaussian beams stem from this
equation, while Bessel, elliptical, and parabolic beams are exact solutions of the full
Helmholtz equation without the paraxial approximation.
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2.3 ATOM-FIELD INTERACTION AND BLOCH EQUATIONS

Let’s consider a two-level atom as shown in figure 1, where |a⟩ is the ground
state and |b⟩ is the excited state, and ω0 is the atomic transition frequency to the ground
state to excited state, ω is the laser frequency,∆ is the detuning and Γ is the decay rate
between levels. The dynamic behavior of the system is governed by the Hamiltonian H

Figure 1 – Two level system scheme

Soucer: The Author, 2024.

(Boyd; Gauthier, 2010), composed of an atomic part HA and an interaction term V . For
this system, we have:

HA = ℏω0|b⟩⟨b| (24)

where ℏω0 represents the energy difference between states |a⟩ and |b⟩. The atom
interacts with a monochromatic field of frequency ω0, represented by:

⃗E(t) =
1√
2
(Eeiωt + E∗e−iωt) (25)

The dipole moment D⃗ is an operator with odd parity, so for atomic states with
well-defined parity, all diagonal elements are zero. Thus, we have:

D⃗ = D⃗ab |a⟩ ⟨b|+ D⃗ba |b⟩ ⟨a| (26)

We must make a new approximation, because when considering the fields
oscillating around the resonance frequency, we must disregard terms that appear in the
Hamiltonian whose frequencies oscillate rapidly with a dependence given by ±(ω + ω0)

and keep only the terms that oscillate slowly ±(ω − ω0). This approximation is known as
the rotating wave approximation (RWA). Therefore the total Hamiltonian for this system
will be given by:

Htotal = ℏω0 |b⟩ ⟨b|+ ℏΩ |a⟩ ⟨b| eiωt + ℏΩ∗ |b⟩ ⟨a| e−iωt (27)

Where Ω = −D⃗abE⃗/2ℏ is called the Rabi frequency. Using the Liouville equation and
considering a closed system, that is, the population is conserved, we can write the
Bloch equations for the populations (ρii) and coherences (ρij).

ρ̇aa = −iΩρabeiωt + iΩ∗ρbae
−iωt + Γρbb (28)
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ρ̇bb = −iΩ∗ρabe
−iωt + iΩρbae

iωt − Γρbb (29)

ρ̇ab = iω0ρab + iΩ(ρaa − ρbb)e
iωt − Γ

2
ρab (30)

ρ̇ab = −iω0ρba + iΩ(ρaa − ρbb)e
−iωt − Γ

2
ρba (31)

Where Γ is the natural width of the excited state. Now, we introduce new variables
called slow variables, we can rewrite this set of equations. So it follows:

ρii = σii (32)

ρab = σabeiωt (33)

ρba = σbae−iωt (34)

Leads to the following equations:

σ̇aa = −Ωσba + iΩ∗σab + Γσbb (35)

σ̇bb = −Ωσab + iΩ∗σba − Γσbb (36)

σ̇ab = i∆σab + iΩ(σaa − σbb)−
Γ

2
σab (37)

σ̇ba = −i∆σba − iΩ(σaa − σbb)−
Γ

2
σba (38)

Where ∆ = ω0 − ω represents the detuning of the atomic resonance frequency.
Under normal conditions, when a resonant field interacts with an atomic system we
have a strong absorption and scattering. Due to the interaction of the medium with a
field a polarization arises, this polarization here is introduced as the complex amplitude
P of the polarization through the relation:

P (t) = Ntr(D⃗ρ) = ND(σabe
iωt + σbae

−iωt) (39)

Where N is the density of atoms. In most experiments, we are interested in
calculating the absorption or refractive index of the atomic medium; these quantities are
related to the average dissipated power. Therefore, the component that is in phase with
the field does not dissipate energy, and consequently, the component responsible for
absorption is the one that is in quadrature with the field. Therefore, absorption will be
proportional to dispersion. To solve this system, and later other more complex ones, we
must look for solutions in the steady state, that is, σij = 0. So, after some calculations,
we find the coherence σab as:

σab =
Ω(∆− iΓ/2)

∆2 + Γ2/4 + 2|Ω|2
(40)

Within Polarization we can introduce a variable called susceptibility of the medium
χ, as the constant of proportionality relating P and E according to:

P = ε0χ · E(t) (41)
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Therefore, we find it that susceptibility is given by:

χ =
2ND

ϵ0E
σba (42)

The equation X can be rewritten as:

χ = χI + χII (43)

Where χI is associated with the real part of 42 and χII with the imaginary part of 42. In
this way, with equation 42 we can find the absorption coefficient, because it is given by
the real part of equation 42, as shown in equation 44 below:

α =
2ω

c
ℑ(n) = 2ω

c
ℑ(1 + χ)

1
2 (44)

The complex index of refraction in the medium is n = (1+χ)1/2 which for χ << 1,
and knowing k0 = ω

c
, we can find the absorption coefficient “α”. We can therefore write:

α = k0ℑ(χ) (45)

On the other hand, the real part of susceptibility gives us the dispersion of the
system:

n = 1 +
1

2
ℜ(χ) (46)

Figure 2 shows the dispersion and absorption in function of the frequency ω.

Figure 2 – Dependence of (a) the absorption coefficient and (b) the index of refraction
with the frequency ω in arbitrary units.

Soucer: The Author, 2024.
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3 PROPAGATION OF LIGHT BEAMS IN NONLINEAR MEDIA

Previously, the propagation equation for the electric field and for the magnetic
field was presented. However, in the previous chapter, only propagation in homogeneous
media was considered. To work with the propagation of light in nonlinear media, we
will need to consider instead of the electric field E, we will consider a generic wave
function ψ, and with some modifications and calculations presented in (Poon; Kim,
2006) we arrive at the Nonlinear Schrödinger Equation (NLSE) (Fibich, 2015), which
describes the evolution of the complex envelope ϕ(x, y, z) of a beam propagating in the
z direction. The NLSE is a partial differential equation that incorporates diffraction and
phase modulation effects due to variations in the refractive index within the medium.

∂ϕ

∂z
=

1

2jk0
∇2
tϕ− j∆nk0ϕ (47)

Here, k0 represents the wave number, ∇2
t is the Laplacian operator in the trans-

verse plane, j is the imaginare unit, ϕ represents the electric field of the beam and ∆n

denotes the variation of the refractive index, after all, we are considering a non-linear
medium, this non-linearity will be related to a variation in the refractive index.

3.1 SPLIT STEP BEAM PROPAGATION METHOD

The Split Step Beam Propagation Method (SSBPM) is widely used in optics to
study the propagation of light beams in nonlinear medias. It combines the resolution of
linear and nonlinear effects alternately, simplifying the numerical integration process
by dividing the wave evolution into small steps along the propagation path (Poon; Kim,
2006). To understand this method, we can introduce the operators S and D into the
paraxial propagation equation:

∂ϕ

∂z
=

1

2jk
∇2
tϕ− jδnk0ϕe (48)

which becomes:
δϕ

δz
= (D̂ + Ŝ)ϕ (49)

The diffraction operator D accounts for diffraction effects and is expressed in
terms of the Laplacian operator:

D̂ = −ik0∇2 (50)

The space-dependent or inhomogeneous operator Ŝ represents phase changes
due to variations in the refractive index within the medium and can take various forms
depending on the specific refractive index distribution:

Ŝ = −j∆nk (51)
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The SSBPM accurately models beam propagation by considering diffraction,
dispersion, and nonlinearity. In the first step, the wave function ϕ is propagated conside-
ring only the linear terms of the equation, which usually involve scattering or diffraction.
This is done through the Fourier transform, which allows to treat diffraction efficiently.
In the second step, the nonlinear effect (usually dependent on the beam intensity) is
considered, while maintaining the wave function ψ in the original space. This is done by
multiplying by the corresponding nonlinear factor. The algorithm for a single step in ∆z

can be written as:

ψ(x, y, z +∆z) = exp(S⃗∆z) exp(D⃗∆z)ψ(x, y, z) =

= exp (−j∆nk0∆z)F
−1 exp

(
j(k2x + k2y)∆z

2k0

)
F [ψ(x, y, z)]

(52)

The SSBPM repeats this process until the field has traveled the desired distance.
Figure 3 illustrates the popagation of the light beam along small distances ∆z. For each
∆z step, the method is applied over and over again until the distance is reached.

Figure 3 – Transverse profile of a Gaussian beam over small propagation distances ∆z.

Soucer: Pedrola, 2015.
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A schematic flow diagram of the SSBPM in its simplest form is shown in Figure
4, which illustrates a recursive loop iterated until the final distance is reached.

Figure 4 – Flow diagram for the beam propagation method.

Soucer: Poon; kim, 2015.

3.2 KERR MEDIA

In the previous section, we presented the equation describing the SSBPM.
However, we can treat diffraction and the effects of inhomogeneity separately using
the SSBPM. Specifically, we have two independent equations represented by Equation
50 and Equation 51. These equations provide solutions for Fresnel diffraction and
phase modulation independently. The solution to Equation 51 corresponds to phase
modulation, as evident from the expression ψ(x, y, z) = exp(−j∆nk0z). When we talk
about a non-linear medium, such as the Kerr type medium, we can introduce the
nonlinear operator N̂ , which describes nonlinear effects in the propagating beam. The
general equation for propagation in a nonlinear medium can be written as:

∂ψ

∂z
= N̂ψ (53)

The expression for the operator N in a Kerr medium can be written as:

N̂ = −j n2E

n0

k0||2 (54)

Here, n2E is the nonlinear susceptibility of the medium, n0 is the refractive index
of the medium in the absence of the light field, and k0 is the wave number. The equation
for propagation in a nonlinear medium is simply found by constructing an equation such
that the appropriate operators on the right-hand side of equation 50 and 54:

δψ

δz
= (D̂ + N̂)ψ (55)
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In this section, we discuss an important nonlinear effect called the Kerr effect
and demonstrate the use of SSBPM to solve this type of problem. The Kerr effect can be
described by the following nonlinear dependence of the refractive index on the electric
field of the light beam:

n = n0 + n2E|ψ|2 (56)

where n2E|ψ|2 is the nonlinear variation of the index, n2E here is the kerr constant and
has a unit of (m/V²). The medium can produce such an effect is called the kerr medium
(Smith; Ashkin; Tomlinson, 1981). We will do a derivation of the N̂ operator to find the
expression:

N̂ = −j∆nk0 = −j n
2E

n2
0

k0|ϕe|2 (57)

and substituting the equation 57 in the equation 55, we obtain the NLSE for the Kerr-type
medium:

∂ψe
∂z

=
1

2ik0
∇2
tψe − j

n2E

n2
0k0

|ψe|2ψe (58)

We cannot solve the equation 58 using the Fourier transform techniques, because
of the non linear term on the right-side of the equation. However, analytical solutions do
exist in one transverse dimension, including a well-known stable solution called spatial
soliton (Chen; Segev; Christodoulides, 2012). Solitons have a special property that they
can propagate without changing their shape.

In the context of intense light beams in nonlinear media, solitons play a crucial
role in the phenomenon of self-trapping. When k < 0 and n2 > 0, solitons can maintain
their shape as they propagate, balancing the effects of propagation due to diffraction
and Kerr nonlinearity. Speaking specifically about a Kerr-type medium, it’s essential to
discuss autofocusing and self-defocusing (Liu et al., 2024).

We can understand this phenomenon using Huygens’ principle, which states that
each point on a wavefront acts as an independent source of secondary waves, all in
phase with each other. Considering a medium with a positive nonlinear refractive index
(n2 > 0), the beam profile induces a radial distribution of refractive indices within the
medium. This distribution is higher at the center and decreases toward the edges. As a
result, the central region of the beam experiences a delay, leading to self-convergence.
On the other hand, in a medium with n2 < 0, the refractive index is lower at the center
and higher toward the edges, causing the beam to experience a delay at the edges and,
consequently, diverge. Figure 5 illustrates both of these effects.

To illustrate this principle, let us consider an incident laser beam with a Gaussian
distribution, as described by the following equation:

ψa(x, y) = ψ0e
−x2+y2

ω2
0 (59)
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Figure 5 – Auto-focus and auto-defocus effects.

Soucer: Boni; Zílio, 2000.

Where ω0 is the width of the Gaussian beam at the focal plane or at the point of least
divergence of the beam. For N2E > 0, from Equation 56, we have:

n = n0 + n2E|ψ0|2 exp
[
−2(x2 + y2)

ω2
0

]
(60)

Which clearly means that intensity distribution creats a refractive index profile
within the beam having a maximum value on the center and gradually deacreasing away
from the center. Expanding the exponent and retaining the first two terms, Equation 60
becomes:

n(x, y) = (n0 + n2Eψ
2
0)− n2Eψ

2
02(x

2 + y2)/ω2
0 ≈ n0 −

2n2Eψ
2
0

w2
0

(x2 + y2) (61)

Now we want to square n(x, y), resulting in:

n2(x, y) ≈ n2
0 −

4n0n2Eψ
2
0

ω2
0

(x2 + y2) (62)

This Kerr-induced effect can be compared with the quadratic medium given by:

n2(x, y) = n2
0 + n2(x

2 + y2) (63)

By comparing Equations 62 and 63, we can identify n2. Note that the quadratic
medium exhibits periodic focusing properties with a modulation period given by:

zm =
πn0√
n2

(64)
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However, Equation 62 implies that the value of n2 is given by 4n0n2e2ψe

ω0
. Therefore,

we can predict that the Kerr medium will have a focusing length approximately given by:

fNL =
zm
2

≈ πn0

2
√
n2

=
π

4

√
n0u0
n2Eψo

(65)

We can consider that the Gaussian beam focusing produces converging rays
with a convergence angle θNL given by:

θNL ≈ u0
fNL

=
4

π

√
n2,i

n0

ψ0 (66)

However, in the absence of any nonlinear effects, the optical beam will spread
due to diffraction and the propagation angle of a Gaussian beam. The propagation
angle in the medium with an index is then given by:

θsp =
λ0

πω0n0

(67)

Therefore, the fact that these two angles are related leads us to expect that
self-focusing can compete with diffraction. When θNL = θsp, the effects of self-focusing
and diffraction cancel out, and the beam propagates without any focusing or defocusing.
The power density equation for a plane wave with amplitude Eo immediately gives the
power density for a Gaussian beam propagating along the z direction:

(S) =
|ψ0|2

2η
exp

(
−2(x2 + y2)

ω02

)
az (68)

For a Gaussian profile, Equation 68 can be simplified as follows:

(S) =
|ψ0|2

2η
exp

[
−2r2

ω2
0

]
az (69)

where η represents the characteristic impedance of the medium with refractive index n0.
Therefore, the total power of the beam is given by:

P0 =

∫ ∞

0

(S) · 2πr dr dz (70)

Equation 70 defines the total power of the beam:

P0 =
n0ε0cπ|Ψ0|2ω2

0

4
(71)

To find the critical power, we calculate the required field amplitude by equating
θNL = θsp, i.e., setting Equations 66 and 67 equal to each other:

ψ0,αT =
λ0

4w0
√
n0n2E

(72)
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Substituting Equation 72 into Equation 71, we obtain the critical power: 5

Pcr =
πcϵ0λ

2
0

64n2E
(73)

Therefore, when P0 = Pcr, self-trapping occurs. For P0 < Pcr, diffraction domi-
nates, and the beam diverges, resulting in the effect known as self-defocusing. When
P0 > Pcr, nonlinear effects prevail, and the beam self-focuses, potentially becoming
abnormally large in the focused region and causing material breakdown.We conducted
Python simulations using the Split Step Beam Propagation Method (SSBPM) to model
an atomic vapor medium exhibiting Kerr-like behavior. In these simulations, we can
define the refractive index values and beam powers. The figure 6illustrates the effect of
self-focusing and self-defocusing.

These images are from our simulation using SSBPM in python for the Kerr media,
where (a) is the initial field profile, and after propagation we can get the autofocus effect
(b) for positive n2 values and (c) with the auto defocus for negative n2 values. For n2 > 0,
the refractive index is higher where the beam amplitude is greater. This behavior leads
to the central part of the beam having a higher refractive index than the outer region,
influencing the light rays’ behavior within the beam.

Figure 6 – (a) is the initial field profile, and after propagation we can get the autofocus
effect (b) for positive n2 values and (c) with the auto defocus for negative n2

values.

Source: The Author, 2024.

Light rays at the beam’s edge, where the refractive index is lower, bend toward
the beam’s center due to the Kerr effect, which is described by the second term on the
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right-hand side of the NLSE. This nonlinear-induced inhomogeneity allows the beam to
maintain its shape by balancing the effects of diffraction and Kerr nonlinearity. Sech be-
ams belong to a family of "nonspreading"or "diffraction-free"beams in a nonlinear cubic
medium, as they retain their shape during propagation. In one transverse dimension,
when n2 is positive and the nonlinear focusing slightly exceeds the diffraction effect, a
periodic phenomenon known as "periodic self-focusing"can occur. Through the Kerr
effect, light rays from the beam’s edge bend toward the center, leading to the nonlinear
optical phenomenon of self-focusing (or, in some cases, self-defocusing).
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3.3 PHOTONIC CRYSTALS

Crystals are materials that exhibit periodicity in their composition, which can ex-
tend in one, two, or three dimensions. The repeating pattern of the crystal’s constituents
in space is referred to as the crystal lattice. This lattice structure was first observed by
mineralogists in the late 19th century and later confirmed by the phenomenon of X-ray
diffraction when X-rays are scattered by the crystals (??).

It was also discovered that electrons propagate through crystals as waves, and
depending on their energy, certain electron waves are unable to propagate, resulting in
the formation of an energy gap known as the forbidden band (John et al., 2008). The
study of crystals gained even more importance with the formulation of the diffraction
theory by physicist Max Von Laue, which explained how X-rays diffract when interacting
with a crystalline material (Eckert, 2012).

Shortly after, William Henry Bragg (1862-1942) and his son William Lawrence
Bragg (1890-1971) formulated a mathematical relationship, known as **Bragg’s law**,
which establishes the condition for constructive interference of waves scattered by the
points of a crystal lattice (Bragg; Bragg, 1913). This law is fundamental for studying
crystal structures through X-ray diffraction, and its mathematical form is:

2d sin(θ) = nλ (74)

where d is the distance between lattice planes, θ is the angle of the incident ray (as
shown in Figure 7), and n is an integer representing the number of wavelengths λ.
Figure 7 illustrates the case where Bragg’s law applies. The path difference between
rays reflected from adjacent planes is 2d sin(θ), leading to constructive interference
under specific conditions.

Bragg’s law is valid only for wavelengths λ < 2d. Although the reflections from
individual planes are specular, only at certain angles θ do the reflections from all planes
add up in phase, resulting in an intense diffracted beam. This diffraction phenomenon
is a direct consequence of the periodic arrangement of the crystal lattice, which also
governs the propagation of electrons. The crystal’s periodic potential restricts the
movement of electrons in certain energy ranges, leading to the formation of energy
band gaps. The geometry of the lattice and the crystal’s composition thus determine its
electrical conduction properties.

This concept of periodicity also applies to waves other than electrons. In the
1980s, researchers began to explore how materials with periodic structures on the scale
of optical wavelengths could manipulate light in ways similar to how crystals influence
electron waves. These materials are known as **photonic crystals**, and they function
by creating periodic variations in the refractive index of the material, analogous to the
periodic potential in a solid-state crystal. Just as electronic band gaps prevent the
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Figure 7 – Bragg’s Law Illustration

Source: The Author, 2024.

propagation of electrons at certain energies, photonic crystals can create photonic band
gaps, where light of specific wavelengths is prohibited from propagating through the
material.

Photonic crystals are not only artificially engineered but also exist in nature.
For instance, the vibrant colors of certain butterflies and insects result from natural
photonic structures in their wings, which act as multilayered, stratified media. These
natural photonic crystals were studied using electron microscopy by Pete Vukusic and
Ian Hooper, revealing intricate nanometric structures responsible for the optical effects
(Vukusic; Hooper, 2005). Similar structures are found in other biological systems, such
as in birds and fish, highlighting the widespread occurrence of photonic crystals in
nature (Preble; Lipson; Lipson, 2005), as illustrated in Figure 8.

In summary, photonic crystals offer a new way to control the flow of light, just as
traditional crystals control electron motion. They are key components in the development
of advanced optical devices, including filters, waveguides, and resonators, and hold the
potential for numerous future applications in photonics.

These structures were initially proposed, under this name, by the works of
(Yablonovitch, 1987) and (John, 1987), which led to a significant increase in the study of
this type of material. However, the study of these structures began much earlier, more
precisely in 1887, when (Rayleigh, 1887) observed the propagation of waves in periodic
structures. It was only in 1972 that significant progress was made in the study of these
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Figure 8 – Examples of Photonic Crystals Found in Nature

Source: Araújo, 2012.

structures, with the work of (Bykov, 1972), which raised the possibility of using periodic
structures to control spontaneous emissions.

Photonic crystals represent a new class of optical media, composed of natural
and artificial structures with periodic modulation of the refractive index. These optical
media have peculiar properties that offer numerous technological applications. Ac-
cording to the number of axes along which photonic crystals have periodicity in their
refractive indices, these materials can be divided into three types: one-dimensional,
two-dimensional, and three-dimensional, as shown in Figure 9.

Figure 9 – Photonic crystal (a) one-dimensional, (b) two-dimensional, (c) three-
dimensional.

Source: Araújo, 2012.

One-dimensional periodic structures consist of stacks of identical parallel mul-
tilayer segments. These are often used as gratings that reflect optical waves incident
at certain angles, or as filters that selectively reflect waves of specific frequencies.
Two-dimensional periodic structures include sets of parallel rods, as well as sets of
parallel cylindrical holes, such as those used to modify the characteristics of optical
fibers known as hollow fibers. Three-dimensional periodic structures comprise arrays of
cubes, spheres, or holes of various shapes, organized in lattice structures very similar
to those found in natural crystals.
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In one-dimensional photonic crystals, the electric permittivity is periodically
modulated in only one direction, while in the other two directions of the structure it
remains uniform. An example of this type of photonic crystal is the Bragg grating (Figure
10), which is widely used to modulate the refractive index along the length of an optical
fiber (Ball; Morey, 1994). When light within the fiber interacts with the Bragg grating,
part of the radiation is reflected and another part is transmitted.

Figure 10 – Opical fibre with a Bragg grating.

Source: Nannipieri et al, 2017.

Two-dimensional photonic crystals can exhibit a wide variety of configurations
compared to one-dimensional ones, as they have periodicity of permittivity along two
directions, while the third direction of the medium remains uniform. An example of this
type of photonic crystal is porous silicon (Pacholski, 2013), with periodically organized
pores, represented by a perforated silicon substrate. Another example is a system
of periodically organized dielectric rods in the air. An example of a two-dimensional
photonic crystals in nature is the pattern on butterfly wings and their rainbow effect are
caused by the reflection of light on the two-dimensional microstructure of the wings.

Three-dimensional photonic structures have modulation of permittivity along
all three directions. In these crystals, the number of possible configurations is greater
than in the previous structures. Many scientific studies are dedicated to designing new
geometric configurations to expand possible applications. The most well-known naturally
formed three-dimensional photonic crystal is the precious stone opal (Rue et al., 2001).
This stone has unique optical properties. When we rotate the opal in the presence of
light, it displays a variety of colors. Due to this behavior, ancient peoples believed that
the opal possessed magical powers.

However, it is known that all these peculiarities are caused by the microstructure
of the opal, which is composed of a series of microspheres positioned at the vertices
of a face-centered cubic lattice. The reflectance in this structure strongly depends on
the angle of incidence of the radiation. The optical properties of photonic crystals are



35

determined by the existence of periodic modulation of the permittivity or refractive index
of the medium.

Therefore, the observed effects have a strong analogy with those of solid-state
physics, that is, the periodically arranged photonic structure resembles that of atoms in
a crystal lattice. This similarity makes it possible to use the properties and calculation
methods applied in solid-state physics. Among the similarities between the physics of
photonic crystals and solid-state physics, the following stand out:

• The periodic modulation of the refractive index in a photonic crystal forms a lattice
similar to the atomic lattice in solid-state physics.

• The behavior of photons in photonic crystals is similar to the behavior of electron-
hole pairs in an atomic lattice.

• The periodicity of both lattices causes the appearance of a gap in the band
structure (band gaps), i.e., an energy interval inaccessible to the particle within
the structure.

• From a theoretical point of view, determining the eigenfunctions in a photonic
crystal is very similar to calculating the wave function of a particle in solid-state
physics. This similarity is used to obtain the photonic band structure.

Despite the strong similarity, there are some essential differences. One of the
main differences is the distribution of particle energy. Electrons follow the Fermi-Dirac
distribution, while photons follow the Bose-Einstein distribution. Additionally, electrons
are influenced by the intra-crystalline field, which must be considered in calculations.
The form of this intra-crystalline field is unknown, so approximate methods such as
the k-p method are used. Photons are not affected by the intra-crystalline field, which
simplifies the calculation of the optical field distribution or photonic band structure.

The most important characteristic that determines the practical application of
photonic crystals is the presence of the photonic band gap. This gap refers to an energy
range or frequency interval forbidden for light propagation within the structure. When
radiation with a frequency belonging to the forbidden interval of the structure is incident,
it is completely reflected. However, if a defect is introduced into the periodic photonic
structure, an effect similar to that observed in semiconductors with defects in their
crystalline structure occurs. This means that new states appear within the forbidden
region, with energies corresponding to the defect frequencies.

Thus, the radiation will propagate within the defect frequency, allowing its propa-
gation in a previously forbidden region. When multiple defects are introduced into the
structure, the radiation propagation is guided as in a waveguide. Here we propose the
creation of a photonic crystal through simulation, where we will work with an atomic
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vapor medium, as described in Chapter 2. The idea is to explore the optical properties
of this medium to develop a functional photonic crystal. To create the crystal, we will
focus on controlling the refractive index of this atomic medium.

The refractive index is a crucial property that determines how light propagates
through a material. In the case of an atomic vapor medium, we can adjust the refractive
index through specific techniques, such as applying electric or magnetic fields, or
manipulating the vapor density. This control capability allows us to create a periodic
structure for the formation of a photonic crystal.

An electromagnetic-optical analysis is usually required to describe the optical
properties of inhomogeneous media, such as multilayer and periodic media. For inhomo-
geneous dielectric media, as we know in chapter 3, the permittivity ϵ(r) varies spatially
and the wave equation takes on the general forms 11. For a harmonic wave of angular
frequency (ω), this leads to generalized Helmholtz equations 14. We can draw an ana-
logy between an atomic vapor medium and a Kerr-type medium through the relationship
between light intensity and refractive index variation. In a Kerr medium, the refractive
index n is dependent on the intensity I of the light propagating through it, described by:

n = n0 + n2I (75)

where n0 is the linear refractive index, and n2 represents the nonlinear coefficient
that quantifies the intensity-induced change in the refractive index. Similarly, in an
atomic vapor medium, the refractive index can also be modified by controlling external
parameters such as vapor density, external fields, or laser detuning. This behavior can
be described by the following equation for the refractive index in an atomic vapor:

n = 1 +
Nd2

2ℏε0
· δ

Ω2 + 2δ2 + Γ
2

(76)

Here N is the atomic density, d is the dipole matrix element, δ represents the
detuning from resonance, Ω is the Rabi frequency, and Γ is the linewidth of the atomic
transition. By examining the intensity-dependent behavior, we can relate this expression
to the Kerr effect. If we assume that the intensity of the incident field I is proportional to
|ψe|2, we can rewrite the refractive index in a form analogous to the Kerr medium, as:

n = n0(δ) + n2I (77)

where n0(δ) is the detuning-dependent refractive index, and n2 represents the nonlinear
component that varies with intensity. For further clarity, if we substitute the expression
for n2 from the atomic vapor equation, we obtain:

n = n0(δ)−
Nd2

2ℏϵ0
· δ

(2δ2 + Γ
2
)2

·
(
2d

ℏ

)2

(78)
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This final form highlights the dependence of the refractive index on both the
atomic parameters (such as detuning δ) and the intensity of the field, demonstrating how
atomic vapor media can be treated similarly to Kerr media in terms of intensity-driven
refractive index modulation. Considering a standing wave within the medium, we create
a periodic intensity pattern that can be used to induce a periodic pattern in the atomic
vapor, similar to a Bragg grating. This periodic intensity pattern can be mathematically
described by the equation:

I = 2I0 cos
2(kz) (79)

where I0 is the initial intensity and k is the wave number. The resulting periodic variation
in intensity can modulate the refractive index of the medium, described by:

n = n0 + 2n1n2 cos
2(kz) (80)

where n0 is the base refractive index and n1 and n2 are modulation coefficients. To better
understand the behavior of the standing wave, we can consider the electric field E of
the wave, which can be expressed as:

E(z, t) = E0 cos(kz − ωt) (81)

where E0 is the amplitude of the electric field, ω is the angular frequency, and t is time.
The intensity I is related to the square of the electric field:

I =
1

2
ϵcE2

0 cos
2(kz) (82)

where ϵ is the permittivity of the medium and c is the speed of light in the medium.
Photonic devices often comprise multiple layers of different materials arranged in a
specific order to achieve desired optical properties. A multilayer medium can also be
periodic, consisting of identical dielectric structures replicated in a one-dimensional,
two-dimensional, or three-dimensional periodic arrangement.

These periodic structures can manipulate light in various ways, such as reflecting
specific wavelengths, guiding light through waveguides, or creating photonic band gaps
that prohibit the propagation of certain wavelengths. The reflection and transmission of
light in such periodic structures can be analyzed using the transfer matrix method.

To analyze how an incident electromagnetic field interacts with a periodic struc-
ture, we apply the transfer matrix M to calculate the behavior of the light as it passes
through each layer. For a single layer of thickness d and refractive index n, the transfer
matrix is given by:

M =

(
cos(kd) i

n
sin(kd)

in sin(kd) cos(kd)

)
(83)

where k = 2π
λ
n is the wave number in the medium and λ is the wavelength of

light.
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To analyze the reflection and transmission of an incident field, we proceed as
follows:

• 1. Incident Field: The incident electromagnetic wave can be represented as a
combination of forward and backward traveling waves. At the boundary of the
structure, we define the incoming and reflected fields in terms of their electric field
amplitudes.

• 2. Propagation Through Layers: For multi-layered structures, we compute the
overall transfer matrix by multiplying the individual matrices of each layer. This
cumulative matrix relates the input and output fields after passing through the
entire structure.

• 3. Reflection and Transmission: With the total transfer matrix, we can determine
the reflection coefficient r and transmission coefficient t by solving the equations
that describe the boundary conditions for the electric field at the first and last
interfaces. These coefficients provide information on how much of the incident
light is reflected or transmitted through the structure.

In practical applications, this method is utilized in devices such as distributed
Bragg reflectors (DBRs), photonic crystals, and optical filters. For instance, DBRs reflect
specific wavelengths of light by constructive interference due to alternating layers of
different refractive indices. The transfer matrix method allows for precise calculations of
the reflection and transmission spectra, which are crucial for designing efficient optical
devices.

The transfer matrix method provides essential information about the interaction
of light with periodic structures, enabling the development of devices that control light
propagation, such as reflectors, filters, and waveguides.

The band structure of the photonic crystal is the characteristic that most reveals
its properties. It is represented by a set of eigenstates or eigenfrequencies of an infinite
periodic structure. The eigenfrequency is also known as the resonance frequency of the
structure. Since the photonic crystal is an infinite periodic structure, a series of Fresnel
reflections occur at the interfaces. The constructive and destructive interference of the
waves results in the transmission or reflection of the radiation.

Each set of eigenstates corresponds to a specific value of the radiation wave
vector. Regardless of the dimensionality of the photonic crystal, the band structure is
represented by a two-dimensional graph. An example of a band structure for a one-
dimensional photonic crystal is shown in Figure 11. The physical significance of the band
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Figure 11 – Band structure of the one-dimensional photonic crystal.

Source: Araújo, 2012.

structure is to relate the properties of the radiation to the characteristics of the optical
medium through which it propagates. In Figure 2.11, the horizontal axis represents
the radiation wave vector, while the vertical axis shows the resonance frequencies
of the medium. Let’s consider the case where radiation with frequency ω1 is incident
on the photonic crystal. After penetrating the structure, the radiation acquires a wave
vector value allowed by the structure. This value can be easily determined from the
band structure. Figure 11 shows that the wave vector with value k1 corresponds to
the radiation frequency ω1. With this wave vector, the radiation propagates within the
structure.

Now, we will analyze another case. If the radiation has a frequency ω2, the
corresponding wave vector does not fall within the range of real values; instead, it has
a non-zero imaginary component. The imaginary part of the wave vector indicates
either attenuation of the radiation or amplification in the case of material gain. In 11,
k represents attenuation. Radiation with a frequency within the interval of k is either
attenuated or amplified by the structure. However, since the radiation has a finite value,
before undergoing reflection, it penetrates slightly into the structure.

These two cases contain basic principles of photonic band structure analysis,
that is, the periodic medium propagates within the allowed frequency intervals and is
prohibited in the intervals where purely imaginary wave vectors, known as photonic
gaps, are present. If the radiation has a frequency belonging to the allowed interval, the
photonic gaps are reflected. The forbidden frequency ranges are usually referred to as
photonic gaps. If the radiation has an allowed frequency, it assumes the wave vector
value that can be found from the band structure.

In Figure 12, we present three-dimensional photonic crystals. These crystals
were generated through simulations conducted in Python, taking into account the
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periodicity and refractive indices of the atomic medium. In these simulations, we modeled
the crystal structures with periodic functions, ensuring that the optical properties were
correctly represented.

Figure 12 – Photonic crystals in 3 dimensions created in Python simulations

Source: The author, 2024.

For the simulation, we considered different parameters, such as the density of
the atomic vapor and the application of external fields, which directly influence the
refractive index of the medium. The periodicity of the structure was carefully adjusted to
create the necessary conditions for the formation of forbidden bands (photonic gaps),
which are essential for controlling the propagation of light through the crystal.

The simulation results showed that by adjusting the mentioned parameters, it is
possible to obtain photonic crystals with desired optical properties, such as selective
reflection and transmission of specific light frequencies through refractive index control.
In Figure 12, the blue regions represent areas with a higher refractive index, while the
red regions represent areas with a lower refractive index. These crystals have potential
for various technological applications, including optical communication devices, sensors,
and lasers.

Furthermore, the use of Python for the simulation allowed significant flexibility in
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modeling the crystals, enabling the exploration of different geometric configurations and
materials. This paves the way for future research and the development of new types of
photonic crystals with customized properties.
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3.4 SIMULATIONS RESULTS

In the previous session, we explored the structure and dynamics of photonic
crystals, highlighting the importance of photonic band gaps and the periodicity of the
refractive index in controlling light propagation. Now, we will focus on how these concepts
are implemented and visualized through simulations performed in Python. We conducted
Python simulations aimed at replicating the formation of photonic crystals using an
atomic vapor medium. To achieve this, we modeled the refractive index of the medium
according to equations 76 and 77, which describe the dependence of the refractive
index on the intensity of the incident electric field. The code was designed to generate a
one-dimensional periodic structure, where the periodicity occurs in the refractive index,
similar to the phenomenon observed in Bragg crystals, where a standing wave creates
a periodic intensity pattern.

These periodic variations in the refractive index simulate the formation of a
photonic crystal within the atomic vapor medium. As previously discussed, a photonic
crystal can create a bandgap for certain light frequencies, preventing the propagation of
radiation within these specific frequencies. In the code, this is represented by the periodic
modulation of the refractive index, resulting in gaps in the simulated photonic band
structure.The simulations demonstrate how light interacts with these structures, either
being reflected or transmitted, depending on the radiation frequency and the geometry
of the crystal structure. This is directly observed in the photonic band structure, where
the relationship between the wavevector of the radiation and the resonant frequencies
of the medium determines whether the light will be transmitted or blocked.

Through these simulations, it is possible to visualize the creation of photonic gaps
and observe how the behavior of light is influenced by the periodicity of the medium.
Additionally, the code allows for adjusting parameters, such as vapor density or the
intensity of the applied field, to explore different configurations of photonic crystals and
better understand how these factors affect the optical properties of the system. In Figure
13, we observe the distribution of the electric field intensity along the z axis. The graph
reveals the formation of intensity peaks where peak (a) represents the reflected beam
and peak (b) represents the transmitted light intensity, suggesting possible focusing
and phase shift phenomena as the beam propagates through the grid. The formation of
these peaks indicates regions where the electric field is amplified, which is related to
the modulation of the refractive index of the medium.
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Figure 13 – The distribution of the electric field intensity ∥E∥ along the z-axis in arbitrary
units, showing the spatial evolution of the Gaussian beam through the
atomic vapor medium.

Source: The author, 2024.

In Figure 13, the beam encounters a Bragg grating with a periodic pattern as
shown in Figure 14, where we illustrate the variation of the refractive index ( n(z) )
along the ( z )-axis induced in a Kerr medium. The sinusoidal oscillation of the refractive
index suggests that the medium has a periodic modulation, which may be caused by
variations in the atomic vapor density. This modulation of the refractive index is crucial
for understanding how the beam is guided or scattered along its trajectory.
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Figure 14 – Variation of the refractive index n(z) along the z-axis in arbitrary units.
The oscillation of the refractive index indicates the presence of a spatial
modulation that influences the beam propagation.

Source: The author, 2024.

Figure 15 shows the temporal and spatial evolution of our Gaussian beam. The
more intense beam, which appears brighter, is the transmitted beam, while the less
intense beam is the reflected beam. These beams are the same as in Figure 13; here,
the objective is to analyze from the perspective of the intensity pattern in a 2D format.
After the beam encounters the Bragg grating, part of its intensity is transmitted, and
the other part is reflected. The interaction between these beams over time and space
creates the observed pattern, which can be used to study phenomena of interference
and wave propagation, as in this simulation we can modify the parameters of the grating
and the beam.
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Figure 15 – Temporal and Spatial Evolution of a Gaussian Beam through a Bragg
Grating The two bright diagonal lines indicate the presence of two light
beams. The more intense beam, which appears brighter, is the transmitted
beam, while the less intense beam is the reflected beam.

Source: The author, 2024.

Finally, Figure 16 presents a 3D view of the evolution of the electric field E as a
function of time and position along the z-axis. This representation visualizes the beam’s
dynamics as it propagates over time, highlighting the continuous interaction between
the beam and the medium’s variations. The depicted peaks and valleys indicate how the
beam’s intensity evolves and suggest regions of strong coupling between the electric
field and the modulated refractive index.



46

Figure 16 – 3D visualization of Gaussian beam propagation transmitted and reflected
within an atomic vapor containing a Bragg grating. The two bright diagonal
lines indicate the presence of two beams of light. The most intense beam,
which appears brightest, is the transmitted beam, while the least intense
beam is the reflected beam.

Source: The author, 2024.
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4 STUDY OF THE VELOCITY REDISTRIBUTION OF EXCITED ATOMS IN CESIUM
RYDBERG ATOM SPECTROSCOPY

This chapter focuses on the study of velocity redistribution of excited atoms and
cesium Rydberg atom spectroscopy, addressing fundamental and advanced aspects of
atomic physics. Rydberg atoms, with their extremely high energy levels, are explored
in Section 4.1, alongside their unique properties such as enlarged atomic size and
sensitivity to electric and magnetic fields.

While the study of Rydberg atoms and velocity redistribution has been addressed
in numerous theoretical works, the objective of this research is to advance these
studies through experimental methods. Specifically, this work will employ Rydberg
atom spectroscopy on cesium atoms, focusing on velocity redistribution processes.
By investigating these processes experimentally, we aim to contribute to a deeper
understanding of the behavior of excited atoms, with potential applications in fields
such as light-matter interaction and atomic-scale technologies. This chapter provides an
in-depth exploration of these techniques, emphasizing their importance in understanding
the outcomes of this study.

4.1 RYDBERG ATOMS AND THEIR PROPERTIES

The study of Rydberg atoms has become a cornerstone in understanding the
fundamental interactions in atomic and quantum physics. Rydberg atoms, named
after the Swedish physicist Johannes Rydberg, are characterized by one or more
electrons excited to high principal quantum numbers (n). These atoms exhibit unique
properties: they can be more than ten thousand times larger than their ground state
counterparts, possess lifetimes that can exceed 1 ms, and demonstrate almost classical
behavior with high magnetic susceptibility and low binding energy (Gallagher, 1994).
Moreover, the exaggerated radiation effects of Rydberg atoms make them invaluable
in various applications including studies in quantum electrodynamics, the classical
limits of quantum mechanics, multiphoton transitions, and atomic interactions with
electromagnetic fields due to their substantial dipole moments (Demtröder, 2008).

The history of Rydberg atoms dates back to the late 19th century when Li-
veing and Dewar documented the spectral lines in alkali elements. Johannes Rydberg
furthered this work by proposing that the wavenumbers of these spectral series were
interrelated and could be expressed with the now-famous Rydberg formula. This early
interest in high principal quantum number transitions led to the first laboratory expe-
riments with Rydberg atoms. However, due to the challenges in producing Rydberg
atoms, which have low binding energy and large cross-sections, significant progress



48

in their study was not made until the mid-20th century with the advent of tunable dye
lasers. These lasers enabled precise investigations into the properties of Rydberg atoms,
marking a significant milestone in atomic physics research.

Rydberg atoms have garnered attention for their large size and extended life-
times, allowing them to be used in applications ranging from quantum computing to
the exploration of fundamental physical constants. Understanding the properties and
behaviors of Rydberg atoms, including their interactions and spectroscopic signatures,
is essential for harnessing their full potential in scientific research and technological
applications. The exploration of Rydberg atoms began with the observation of spec-
tral lines in alkali metals. Liveing and Dewar’s work in the late 19th century on these
long series of spectral lines laid the groundwork for Johannes Rydberg’s subsequent
contributions. Rydberg proposed a formula that interrelated the wavenumbers of these
spectral lines, suggesting they could be expressed as:

vn = v0 −
R

(n− δ)2
(84)

Where ( v0 ) and ( δ ) are constants characteristic of the atom of the series, ( R )
is a universal constant (known as the Rydberg constant) and ( n ) is an integer. In 1906,
R. W. Wood observed the absorption lines in sodium gas for transitions to states of (
n = 60 ) (Wood, 1906). From the beginning, there was interest in transitions involving
large ( n ), and these were the first laboratory experiments with Rydberg atoms.

Although the first laboratory experiments with Rydberg atoms occurred in the
early 20th century, after this beginning, due to the difficulty in producing Rydberg
atoms, which have low binding energy and large cross-section, studies focused on the
development of quantum theory. In 1913, Bohr incorporated two important postulates
into the ideas of classical physics: the first states that angular momentum is quantized
in units of ( h ), and the second that the electron does not radiate continuously, but only
during transitions between defined energy states.

In the mid-20th century, astronomers B. Höblund and P.G. Mezger revitalized the
study of Rydberg atoms by observing transitions ( n ) close to 100 in hydrogen clouds
in interstellar space (SCHMIDT, 2012). This interest also received a new and significant
boost with the advent of tunable dye lasers. With these lasers and suitable experimental
apparatus, it became possible to study the properties of Rydberg atoms with greater
precision. This relatively simple method allowed access to specific states of Rydberg
atoms and detailed investigation of their properties in the laboratory (Oliveira, 2001). To
this day, laser excitation is the main means of producing Rydberg atoms.

To determine the properties of Rydberg atoms, it is necessary to define their
wave functions. We will use the quantum defect theory to describe the wave functions
of an electron in a Coulomb potential. In this approximation, we apply the method to an
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atom with a single valence electron in a Rydberg state, including the hydrogen atom as
a special case. By analyzing the average radius of the orbit of an electron in a hydrogen
atom, we can write the expression:

r = a0n
2 (85)

where ( a0 ) is the Bohr radius igual (a0 = 5 · 10−11m) (Demtröder, 2008). Thus,
the excited electron in this state interacts with the atomic nucleus as if it were a nucleus
with ( Z = ne ), where ( ne ) is the number of electrons in the Rydberg state. Since the
electron in the Rydberg state has a high principal quantum number, according to Bohr’s
semi-classical model, it is very far from the nucleus. Therefore, it "sees"the nucleus with
charge ( Z ) shielded by ( Z − 1 ) electrons.

Consequently, we will have a potential similar to that of a hydrogen atom. The
energy of a hydrogen-like Rydberg state depends only on ( n ), so states with the same
( n ), but different ( ℓ ), are degenerate. By analyzing the expression that defines the
energy for alkali atoms and the one that defines the energy for hydrogen, we find that
they differ in two aspects: in the expression for the energy of alkali atoms, the Rydberg
constant takes into account the reduced mass of the electron and we use the effective
quantum number ( n∗ ), which corresponds to the quantum defect subtracted from ( n ).

En,l = − Ry

(n− δn,l)2
(86)

The quantum defect δn,l arises from the interaction of the electron with the
nucleus (other electrons and the nucleus) when, during its trajectory, it passes close to
the nucleus. For highly excited states, the behavior in the quantum regime approaches
the behavior in the classical regime, and we can use this orbit to understand its dynamics
and describe states in terms of the electron’s orbit.

The classical Bohr-Sommerfeld theory describes the motion of the electron
around the nucleus, predicting that for low values of orbital angular momentum (l),
the orbits are highly elliptical, allowing the electron to both penetrate and polarize
the nucleus, generating the quantum defect. For high values of (l), the orbits become
circular, making the atoms more hydrogen-like and the quantum defects smaller. Thus,
for hydrogen-like excited states, in a first approximation, we consider the point nucleus;
for low (l), the valence electron penetrates the nucleus with each revolution.

Therefore, it is necessary to distinguish between penetrating orbits (low values
of l) and non-penetrating orbits (high values of l), for which the point core model is
applicable. In the specific case of penetrating orbits, where the point core model is not
valid, the consideration of the quantum defect is essential due to the interaction between
the valence electron and the nuclear core with radius ( r0 ). This consideration fits the
Rydberg series.
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In general, the properties of Rydberg atoms follow a scaling law that varies
with the effective quantum number ( n∗ = n − δ ). Basically, this will depend on the
angular momentum ( l ), since ( δ ) also depends on it. After this brief introduction to the
properties of Rydberg atoms, we will describe an overview of collisonal broadening and
collisional shift.

4.2 COLLISIONAL BROADENING AND COLLISIONAL SHIFT

Collisional broadening is a phenomenon that occurs when atoms or molecules
in a gas collide with each other, resulting in a change in the width of spectral lines.
This effect is caused by the interaction between the particles during collisions, which
temporarily alters the energy levels of the involved atoms or molecules. Collisional
broadening is one of several mechanisms that can affect the shape of spectral lines,
being particularly important under high-pressure conditions where collisions are more
frequent.

To explain this phenomenon, let’s consider an atom A, with energy levels Ei and
Ek, approaching another atom B. The interaction between A and B alters the energies of
both levels. This energy change depends on the electron shell structure of both partners
A and B, the specific energy levels, and the energy between two atoms A and B varies
with the distance R(A,B), which we define as the distance between the centers of mass
of A and B. The energy change generally differs for the different levels, and it can be
positive (for repulsive potentials between A and B) or negative (for attractive potentials).

The comment raises a valid point—probabilities should not be negative, as
probability values are bounded between 0 and 1. In the context of atomic interactions,
what you are likely referring to is the sign of the interaction potential or the energy
difference between states, not the probability itself. For repulsive interactions, the
potential is positive, and for attractive interactions, it is negative, but the probability
of interaction should always be positive. The interaction potential between two atoms
depends on their relative velocity and the nature of their interaction. If the interaction
between A and B is repulsive, the potential energy is positive, whereas for attractive
interactions, the potential energy is negative. By plotting the energies Ei(R) and ER(R)
of atom A as a function of the distance R, we obtain potential curves, as schematically
shown in Fig. 17.

The approach of two particles to a distance Rc, where the interaction energy
between them becomes significant (i.e., the potential curves deviate noticeably from the
value E(R = ∞)), is referred to as a two-body collision. The resulting system, AB(R),
from this interaction is called a collision pair. If the densities of particles A and B are
not very high, the probability of three particles simultaneously approaching within a
distance R < R2 (which would constitute a three-body collision) is extremely small and
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Figure 17 – Potential curves of the collision pair AB and A∗B.

Source: Demtrõder, 2008.

can be neglected. The distance Rc, where the interaction becomes significant, is known
as the collision radius. Therefore, if the relative speed of A and B is v, the duration of
the collision, also referred to as the collision time, can be defined as:

τcoll =
Rc

v
(87)

The frequency of the radiation νik emitted or absorbed in the electron transition
depends on the distance R at which the transition occurs (we assume here that during
a collision, radiative transitions are of short duration) is:

νik =
Ei(R)− Ek(R)

ℏ
(88)

The duration of the transitions, which is short compared to the mixing time,
ensures an average distance Rm, with a distribution around Rm, as illustrated in Fig
17. In contrast to pure atomic wave functions, which predict constant distances and
random thermal collisions, the collision broadening process leads to a broadening of the
spectral lines in the gas. This broadening reflects a distribution of radiation frequencies
νik, centered around the most probable value νikRm. These frequencies can shift relative
to those predicted by the pure electronic wave function for an atomic temperature T0.

Figure 18 also shows us the shift ∆ν = ν0 − νk(Rm), that depends on how the
two energy levels Ei(Rm) and Ek(Rm) are altered at the distance R(m). The intensity
profile I(ω) of the collision-broadened emission line can be described by the following
expression:

I(ω) ∝
∫
Aik(R)Pcoll(R)×

d

dR
(Ei(R)− Ek(R)) (89)

where Aik(R) represents the probability of spontaneous transition, which varies with “R”
due to the distortion of electronic wave functions caused by the interaction between the



52

Figure 18 – Shift and broadening of a spectral line by collisions.

Source: Demtrõder, 2008.

particles. The shape of the intensity function I(ω) in equation 89 is determined by the
convolution of these dependencies, resulting in a profile that can be analyzed to obtain
information about the properties of the gas and the interactions between the particles.

The functions of the collision pair (AB) also depend on the distance (R). The
probability Pcoll(R) that the distance (R) is between R and R + dR is influenced by the
interaction potential, the density, and the temperature of the gas. This probability Pcoll(R)
can be derived by taking into account the probability distribution of collision distances
and the dependence of transition energy on the system’s temperature. The number of
particles B in a spherical shell with radius R around atom A is given by:

NB(R) = nB4πR
2dR exp

(
−Epot(R)

kT

)
(90)

where nB is the average density of atoms B. The Boltzmann factor exp
(
−Epot(R)

kT

)
takes

into account that the energy of the collision pair depends on the potential interaction
energy Epot(R) (Demtröder, 2008). Because te intensity of an absorption line is pro-
portional to the density of absorbing atoms while they are forming collision pairs, the
intensity profile of the absorption line can be writen as:

I(ω)d(ω) = C∗
[
R2 exp

(
−
Ei
pot(R)

kT

)
d

dT
(Ei(R)− Ek(R))

]
dR (91)

From equation 91, it is possible to determine the interaction potential. Often,
spherical model potentials are substituted into eq. 91 such as the Lennard-Jones
potential (Hindmarsh; Petford; Smith, 1967):

Epot(R) =
a

R12
− b

R6
(92)

The discussions presented so far were only about elastic collisions, where the
energy level of atom A is only shifted during the collision but returns to its initial value
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after the collision unless the atom has emitted a photon during the collision. The shift
of absorption or emission lines caused by elastic collisions corresponds to an energy
shift ∆E = ℏ∆ω. This energy difference is provided by the kinetic energy of the collision
partners. In the case of positive shifts ∆ω > 0, the kinetic energy is lower after the
collision than before.

Besides these elastic collisions, inelastic collisions can also occur in which the
excitation energy of atom A is partially or completely transferred to the internal energy
of the collision partner B, or to the translational energy of both partners A and B. Such
inelastic collisions are called quenching collisions because they decrease the number
of excited atoms A in level B; thus, they quench the fluorescence intensity. The total
transition probability Aj for the depopulation of level B is the sum of the radiative and
collision-induced probabilities (Hindmarsh; Farr, 1973):

Ai = Arad + Acol with Acol = nBσjvσν (93)

Inserting the relations:

ν =

√
8kT

πµ
, µ =

MAMB

MA +MB

and pB = nBkT (94)

into equation 93 we can obtain the total transition probability.

Ai =
1

τspont
+ apB with a = 2δik

√
2

πµkT
(95)

which is similar to the pressure dependence of the lifetime. From the pressure-dependent
transition probability, a corresponding pressure-dependent line width δω is caused, as it
shortens the effective lifetime of the excited level (Demtröder, 2008). It can be written
as the sum of two damping terms.

δω = δωn + δωcoll = γn + γcoll = γn + apB (96)

In equation 96, the additional collision-induced line broadening apB is, therefore,
often called pressure broadening. The energy difference between the corresponding
states of atom (A) changes during the elastic collision time, the frequency ω of the
emitted or absorbed radiation changes by δω(R), this change depends on the interaction
potential between (A) and (B). Although the frequency returns to its initial value after
the collision, the phase shift is

∆ϕ =

∫ ∞

0

∆ω(t)dt (97)

Elastic collisions are, therefore, called phase-changing collisions. As the fre-
quency differences ∆ω vary for collisions with different distances R(AB), the set of
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atoms (A) undergoes random phase changes. The Fourier transform of the radiation
provides a Lorentzian line profile, which is broadened and shows a shift of the line
center. The line profile caused by elastic and inelastic collisions is obtained after a
somewhat lengthy calculation.

I(ω) =

(
γn+γinel

2
+Nνσb

)2
(ω − ω0 −Nνσs)2 +

(
γn+γinel

2
+Nνσb

)2 (98)

Just like in collision broadening, the interactions between atoms or molecules
during collisions can perturb the transitions between quantum states. This perturbation
can result in a shift to higher or lower frequencies in the central position of the spectral
lines. To better understand the physical meaning of the line broadening cross-section σb
and the line shift cross-section σs, it is necessary to determine the relationship between
the phase shift η(R) and the potential V (R). We consider potentials of the form:

Vi(R) =
Ci
Rn

, Vk(R) =
Ck
Rn

, (99)

between the atom in the level Ei or Ek and the perturbing atom B. The frequency shift
∆ω for the transition Ei → Ek is then

ℏ∆ω(R) =
Ci − Ck
Rn

(100)

Line broadening can result from two main causes: the phase shift, which occurs
due to the frequency change of the oscillator during the collision, and the extinction
collisions, which reduce the effective lifetime of the excited level of A. The corresponding
phase shift of oscillator A, caused by a collision with impact parameter R0, where the
dispersion of B is neglected, implies that the path of B is not deflected but follows a
straight tangent line.

∆ϕ(R0) =

∫ +∞

−∞
∆ωdt =

1

ℏ

∫ +∞

−∞

(Ci − Ck)dt

[R2
0 + v2(t− t0)2]n/2

=
αn(Ci − Ck)

vRn−1
0

(101)

Equation 101 establishes the relationship between the phase shift ∆ϕ(R0) and
the difference 100 of the interaction potentials, where αn is a numerical constant that
varies according to the exponent n in equation 100. Phase shifts can be positive Ci > Ck

or negative, depending on the relative orientation of the spin and angular momenta. The
main contribution to the line broadening cross-section σb comes from collisions with
small impact parameters, while the line shift cross-section σs has large values for large
impact parameters. This indicates that elastic collisions at large distances do not cause
noticeable line broadening but can still significantly shift the line center.

The influence of speed-changing collisions and the correlation between Doppler
and collision broadening on the spectral line profiles is considered in a unified manner
using the classical phase shift theory of Anderson-Talman for collision broadening and
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the Galatry diffusion model for the motion of radiating particles. A general formula
for the correlation function is derived from the impact limit, which produces the well-
known speed-dependent Voigt profile in the case where speed-changing collisions are
neglected, but Doppler-collision correlations are taken into account. In the opposite
case, when Doppler collision correlations are omitted, but speed-changing collisions are
included, this formula becomes identical to the one derived by Galatry (Ciuryło; Szudy,
1997).

4.3 VELOCITY REDISTRIBUTION

In this chapter, we address the analysis of velocity redistribution in excited
atoms, is a complex phenomenon, influenced by various factors such as collisions and
interactions with external fields. To achieve a detailed understanding, we explore two
complementary approaches: the relaxation rate and the Keilson-Storer kernel. Firstly,
the transverse relaxation rate (ΓT ) is examined as a fundamental parameter describing
the system’s dynamics under different pressures and collision conditions.

Equation 120 provides a standard interpolation between the Knudsen and high-
pressure limits, allowing for precise analysis of the experimental conditions where
velocity redistribution occurs. The importance of this parameter is highlighted by compa-
ring the effects of velocity-changing collisions and transit relaxation, offering a critical
view of the validity of simplifications made in different pressure regimes. Additionally,
the Keilson-Storer kernel is introduced as an essential tool for modeling velocity redistri-
bution. The use of this model is justified by its ability to accurately represent both strong
and weak collisions, providing a robust method for describing interactions between
atoms and buffer gas atoms.

The choice of the Keilson-Storer kernel is particularly relevant due to its correct
physical properties and adherence to detailed balance, allowing for a rigorous interpre-
tation of experimental data. Although the main focus of the work is on cesium atoms, the
use of sodium atoms for theoretical description is justified for several reasons. Sodium is
often used as a representative model due to its simplicity, and many of the fundamental
concepts applied to sodium atoms are also relevant to cesium atoms. The comparable
properties and similar redistribution mechanisms between these atoms enable the
successful transposition of results obtained for sodium to the cesium system, facilitating
the application of the theories and models developed in this work. By integrating these
approaches, this chapter provides a comprehensive and detailed understanding of the
velocity redistribution processes, addressing both theoretical contributions and practical
implications of these phenomena.



56

4.3.1 GENERALIZED BLOCH EQUATIONS

To explain this phenomenon we will base ourselves on the Bloch equations,
using sodium atoms, (Haverkort; Woerdman, 1990) worked with Bloch equations in an
arbitrarily strong laser field and with the Boltzmann equation, describing the evolution
due to collisions between Na atoms and buffer gas atoms. We will restrict ourselves to
a simplification of the four-level scheme of Na atomic levels, as shown schematically in
Fig. 19. Levels 1 and 2 represent the hyperfine levels of the ground state 3S1/2F = 1

and F = 2, respectively.

Figure 19 – The simplified energy level diagram of Na. Levels 1 and 2 are the
3S1/2, F = 1 and F = 2 ground-state levels, respectively. Levels 0 and
3 are the resonant and the nonresonant 3P excited-state fine-structure
levels, respectively. The 32P hyperfine splitting has been neglected. The
level numbering is chosen in such a way that level 0 is the 3P1/2 level for D1

excitation and the 3P3/2 level for D2 excitation.

Source: Haverkort; Woerdman, 1990.

The excited state directly populated by the pumping laser can be either the fine
structure level 3P1/2 or 3P3/2. Finally, level 3 is the non-resonant fine structure level of the
electronic state 3P , which is not directly populated by the pumping laser since the fine
structure separation (510 GHz) is much larger than the Doppler width (1.6 GHz). The
hyperfine and Zeeman structures in the electronic 3P state are neglected in our model.
This simplification is justified by the fact that, under most experimental conditions (Werij
et al., 1987a), the collisional linewidth, power-broadened linewidth, and the collisional
mixing rate are comparable to or greater than the hyperfine separations of the excited
state.

To simplify the discussion, we start with an evolution equation for the general
case of non-degenerate four-level absorbers. Throughout this section, these four-level
absorbers will be specified as Na atoms, introducing degeneracies. The set of absorbers
is described in terms of the density matrix elements ρij(r, v, t) which, in the case of
i = j, simply represent the velocity distribution at level i, and in the case of i ̸= j,
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represent the coherences between levels i and j. The evolution of ρij is determined by
a generalized Bloch equation. This equation derives from the optical Bloch equation,
which is essentially the Liouville equation, and the quantum mechanical version of the
Boltzmann equation (Berman, 1978).(

∂

∂t
+ v · ∂

∂r

)
ϱii =

−i
ℏ
[H, ϱ]ii−Aiϱii+

∑
j

αjiAiϱjj +Liiϱii+
∑
j ̸=i

(L+
jiϱjj +L−

ijϱii) (102)

Here, the left side represents the flux term from the Boltzmann equation. On
the right side, the commutator of the Hamiltonian H and the density matrix ϱ(r, v, t)
describes absorption and emission induced by the pumping laser radiation; spontaneous
decay is included by a loss term −Aiϱii and a gain term αjiAiϱjj, where αji represents
the branching ratio of spontaneous decay from level j to level i. The collision operator
Lii describes the effect of collisions that alter the velocity (vcc) within a single level. The
collision operator L+

ji is a gain term describing transfer from level j to level i.

The operator L−
ji describes loss in the transfer from level i to level j. These

operators are used to include the effect of collisions that change fine structure (fsc)
between levels 0 and 3. The Hamiltonian H has matrix elements:

Hij = ℏωi − µij · δij (103)

where ωi is the energy of level i, µij is the transition dipole moment, and Eij(t) is the
oscillating electric field due to the pumping laser, tuned close to the transition i→ j:

δij(r, t) = δij cos(kz − ωLt)ex (104)

Here, ex is a unit vector indicating the polarization of the laser field and k = ωL/c.
The temporal evolution of the off-diagonal elements of the density matrix is governed by
a generalized Bloch equation:

∂ϱij
∂t

+ v · ∂ϱij
∂r

=
−i
ℏ
[H, ϱ]ij −

(
Ai
2

+
Aj
2

+ ΓPhij + iSPhij

)
ϱij (105)

For Na, we assume that the perturbing density is much higher than the Na density,
and the perturbing distribution remains Maxwellian. The rotating wave approximation
(RWA) and field interaction notation are used for the off-diagonal elements ρij:

ϱij(r, v, t) = ϱ̃ij(r, v, t) exp(−i(kz − ωLt)) (106)

Temporal derivatives are set to zero, and the flux term is replaced by a relaxation
term describing an ad hoc diffusive coupling between the illuminated volume and an
infinite reservoir of atoms in equilibrium. The generalized Bloch equations for Na are
simplified by considering that transfer collisions occur only between levels 0 and 3, and
the laser only couples level 1 to 0 and level 2 to 0 with Rabi frequencies:

Q =
µ0g0
2ℏ

σ10 −
µ0g0
2ℏ

σ20 (107)
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The steady-state equations for the relevant elements of the density matrix are:

∂ϱ̃00
∂t

= iΩ(ϱ̃10− ϱ̃01)+ iΩ(ϱ̃20− ϱ̃02)−A0ϱ̃00+L00ϱ̃00+L−
03ϱ̃00+L+

30ϱ̃33+ΓT (n
(0)
0 W (v)) = 0

(108)
∂ϱ̃11
∂t

= iΩ(ϱ̃01 − ϱ̃10) + α01A0ϱ̃00 + α31A3ϱ̃33 + L11ϱ̃11 + ΓT (n
(0)
1 W (v)− ϱ̃11) = 0 (109)

The detunings of the laser field from the centers of the transitions 1 → 0 and
2 → 0 are given by:

∆10 = ωL − (ω0 − ω1) + SPh10 , (110)

∆20 = ωL − (ω0 − ω2) + SPh20 , (111)

The Bloch equations for Na assume that the atoms remain in the laser beam
long enough to reach a steady state. The effects of transients and the terms ΓTϱij(i ̸= j)

are neglected. The diagonal elements of the matrix ϱ̃21(v) are identified with the velocity
distribution functions fi(v) through:

f(v) = ϱii(v) (112)

4.3.2 RATE EQUATIONS FOR VELOCITY DISTRIBUTIONS

In the analysis of the equations of motion for the sodium atom system, it is
possible to eliminate the coherences ϱ̃10 and ϱ̃20 from Bloch Equations. However, it is
generally not possible to eliminate the coherence ϱ̃21. Nonetheless, in a strong collision
model, where a Maxwellian velocity distribution is established in a single collision, ϱ̃21
can also be eliminated. Direct calculations (Haverkort; Woerdman, 1990) show that
the coherence ϱ̃10 in such a strong collision model can not only be eliminated from the
system of equations but actually goes to zero in the limit Ω2 ≪ Ω ·∆ωHFS, where Ω is
the Rabi frequency, Γ = ΓPh10 + A0 is the homogeneous linewidth, and ∆ is the angular
frequency separation between levels 1 and 2.

Physically, the coherence ϱ̃21 can be neglected because the pumping laser
interacts with two distinct velocity classes in levels 1 and 2, which do not overlap
spectrally, provided that the Rabi frequency is sufficiently small. Effectively, for each
of these two velocity classes, only two levels are coupled by the laser field, allowing
for the elimination of the inter-level coherences ϱ̃10 or ϱ̃20. In the current treatment, the
coherence ϱ̃21 will be neglected. The resulting set of linear equations is:

∂f0
∂t

= 0 = R10

(
f1
g1
g0
f0

)
+R20

(
f2
g2
g0
f0

)
−A0f0+L21f0+L−

03f0+L+
03f3+ΓT (n

0
0W (v)−f0)

(113)
∂f1
∂t

= 0 = −R10

(
f1
g1
g0
f0

)
+ α01A0f0 + α31A3f3 + L11f1 + ΓT (n

0
1W (v)− f1) (114)

∂f2
∂t

= 0 = −R20

(
f2
g2
g0
f0

)
+ α02A0f0 + α32A3f3 + L22f2 + ΓT (n

0
2W (v)− f2) (115)
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∂f3
∂t

= −A3f3 + L33f3 + L−
30f3 + L+

03f0 + ΓT (n
0
3W (v)− f3) (116)

where Rij(vz) are velocity-selective excitation rates:

Rij(v) =
2Ω2

Γ
Lij(vz) =

δHI

ℏωL
g0

g1 + g2
Lij(vz) =

1

2
Ai

(
I

I0

)
Lij(vz) (117)

Lij(vz) =
Γ2

(∆ij − kvz)2 + Γ2
(118)

Γ = ΓPh10 +
1

2
A0 = ΓPh20 +

1

2
A0 (119)

where Lij(vz) is a Lorentzian function, δH is the homogeneous absorption cross-section,
and Is is the saturation intensity for a two-level system without velocity-changing collisi-
ons. These quantities are explicitly defined by Eqs. 117, 118, and 119. Degeneracies of
the levels are neglected in our treatment, focusing on the case of sodium. The factors g0

g1

and g0
g2

denote the ratio of the degeneracy of level g1 and g2 to the resonant ground level.

It should be noted that the set of Eqs. 113 to 116 can be interpreted as a
set of rate equations; indeed, each term in these equations has a simple heuristic
interpretation. Due to the fact that time derivatives are defined as zero, coherences are
not explicitly displayed in the set of equations.

4.3.3 RATE OF RELAXATION

The transverse relaxation rate ΓT , present in the rate equations, can be obtained
by interpolating between the Knudsen limit and the high-pressure limit (Tomasi et al.,
1993) in a standard manner (Hermans et al., 1970).

ΓT =
2.4052Dg

R2
+

(
1

1 + K
p

)
(120)

where R is the radius of the pumping laser beam, Dg is the diffusion coefficient of Na
atoms in the ground state under the prevailing perturbing pressure, 2.405 is the smallest
zero of the Bessel function of order zero, and K is the Knudsen coefficient defined as:

K = c · l̄p
R

(121)

Here, l̄ is the mean free path and c is a numerical constant equal to 6.8 for a hard
sphere interaction. Equation 120 is valid across the entire pressure range, including the
Knudsen limit. In this latter limit, the relaxation rate reduces to Γ = v̄

2R
, which is simply

the reciprocal flight time of a Na atom within the pumping beam.

In the rate equations, transit relaxation has a similar effect to strong velocity-
changing collisions, i.e., collisions that thermalize the velocity distribution. However,
transit relaxation is inversely proportional (through Dg) to the buffer gas pressure p, as
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long as p≪ K, while the collision rate is linearly proportional to p. For example, in the
case of Xe as the buffer gas, velocity-changing collisions are strong, and using Eq. 120
with collision rate data (which will be presented in Section 4), we have:

ΓT
Γcccg

=
6.10−3

(PR)2
(in Torr, R in mm), (122)

where Γcccg is the relaxation rate for velocity-changing collisions in the ground state.
In the limit where the pressure becomes small (pR < 0.1mm Torr), transit relaxation
cannot be neglected. All authors who have calculated drift velocity often neglected
transit relaxation and obtained an expression for drift velocity that is independent of
p in this low-pressure limit, such as (Ho; Wang; Chu, 1986), leading to predicted drift
velocities as quite large (e.g., vdrift ≫ 10m/s). Furthermore, the expression for the drift
velocity obtained in these theories is proportional to Γccc

e −Γccc
g

Γccc
g

even in the zero-pressure
limit.

These results correspond to a rather unrealistic situation where the laser beam
diameter R must increase proportionally with 1/p to keep the mean free path small
compared to R. In all practical situations, R is kept constant, and transit relaxation should
be considered by substituting into the theoretical expressions of Nienhuis (Nienhuis,
1986) and Gel’mukhanov (Werij et al., 1987b):

Γccci → Γccci
ΓT

(123)

The corrected expression for the drift velocity in the case of 2-level optical
absorbers experiencing strong velocity-changing collisions then becomes proportional
to:

vdr ∝
Γccce − Γcccg
Γccce − ΓT

(124)

resulting in a zero drift velocity in the limit as p approaches zero.

4.3.4 THE KEILSON-STORER KERNEL

The collision operator L can be rewritten in terms of a collision rate γ(v) and a
kernel K(v′ → v) such that:

Liif(v) = −γi(v)f(v) +
∫
dv′Ki(v

′ → v)f(v′), (125)

Γi(v
′) =

∫
dvKi(v

′ → v) (126)

K(v′ → v) is a gain term for the velocity range around v and is defined as the probability
density in velocity space that a Na atom has its velocity changed from v′ to v as a
result of collisions with buffer gas atoms. Since the Na-perturbator interaction potential
is known, one can, in principle, calculate exactly the collision rate and kernel through
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the differential cross-section (Saxon; Olson; Liu, 1977). However, such calculations are
extremely complicated. It is more useful, at the current stage of LID research, to connect
the drift velocity in LID to a kernel model that contains some parameters which can be
related to the interatomic potential. We chose a Keilson-Storer (??) kernel model of the
form:

KKS(v′ → v) = Γccc
1

π(∆u2)3/2
exp

(
−(v − αKSv′)2

∆u2

)
(127)

where:
∆u = v̄

√
1− (αKS)2 (128)

Here, the velocity before the collision is v′, the average velocity after the collision
is v = αKSv′, and ∆u is the rms average rate of velocity dispersion after the collision.
The choice (Haverkort; Woerdman, 1990) to use the Keilson-Storer model is motivated
by the following reasons:

• The Keilson-Storer kernel is physically correct in both limits of a Maxwellian velocity
distribution.

• The Keilson-Storer kernel obeys detailed balance and therefore conserves strong
collisional invariants (and weak collisions for Maxwellians). In the first limit, the
K-S kernel approaches the classical limit of the δ function.

• In the weak limit, the K-S kernel has been used by various authors (Kolchenko et
al., 1973) from the Fokker-Planck equation; this equation is the exact solution of
the Green’s function to describe weak collisions.

K(v,∆t; v0) =
1(

2πq
β
(1− e−2β∆t)

)2 exp(− β(v − v0e
β∆t)2

2πq(1− e−2β∆t)

)
(129)

where K(v,∆t; v0) is the velocity distribution at time ∆t, assuming it is a delta function
δ(v − v0) at time t = 0, and 2q/β = v̄2 is the damping rate. Although the Fokker-Planck
equation typically applies to the motion of Brownian particles in a fluid, where a large
number of collisions occur in the observation time ∆t, a connection with weak collisions
between Na atoms and perturbators can be easily made by identifying:

αKS = e−β∆t, (αKS ≈ 1), (130)

and considering the case where a large number of very weak Fokker-Planck type
collisions occur in a time interval ∆t. A large number of very weak collisions can be
considered analogous to the random force in the Langevin equation. Such a large
number of very soft collisions is equivalent to a single kinetic collision producing δv

and occurring at a rate Γ = 1/∆t. The eigenfunctions of the Keilson-Storer kernel
are identical to the exact eigenfunctions of the kernel for Maxwell molecules; these
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are molecules with a repulsive r−4 interaction. In turn, the eigenfunctions for Maxwell
molecules are often used in kinetic theory to expand the distribution function, as they are
known to be a good approximation to the true eigenfunctions in many cases (McCourt;
Liu, 1982). The eigenvalues (Snider, 2023) of the Keilson-Storer kernel are Γccc(αKSn);
the eigenvalue n = 1 describes diffusion. This results in:

Γccci = Npvrδ
ccc
i (131)

σDifi = (1− αKS)δccci (132)

Di =
kBT

m
(Npvrδ

Dif
i )−1 (133)

vr =

(
8kT

πµ

) 1
2

(134)

where σccci is the cross section for velocity-changing collisions, σDifi is the diffusion
cross section, and D is the diffusion coefficient. A generalization of this procedure for
an arbitrary kernel and for higher eigenfunctions was presented separately (Berman;
Haverkort; Woerdman, 1986); here, two different sets of relations between the collision
kernel and the transport coefficients were established. These published relations are
identical for a kernel that correctly obeys collisional dynamics, while they need not
be identical for a phenomenological kernel unrelated to a potential. It has been found
that both sets of relations are equivalent for a Keilson-Storer kernel. This fact does not
contradict viscosity when using a Keilson-Storer kernel, provided that some justification
for using this kernel is adopted.

We address the velocity redistribution of excited atoms through the application
of theoretical models and established computational methods. The choice to use the
rate equation model and the Keilson-Storer kernel was motivated by the need for an
accurate and adaptable description of the velocity redistribution phenomena in complex
atomic systems. The relaxation rate model and the Keilson-Storer kernel provide a
solid foundation for analyzing and interpreting velocity redistribution phenomena. The
transverse relaxation rate ΓT was described in terms of the Knudsen and high-pressure
limits, offering a detailed understanding of the conditions under which transit relaxation
becomes relevant. Additionally, the Keilson-Storer kernel was selected for its ability to
correctly capture collisional dynamics across various pressure regimes and its properties
compatible with kinetic theory.

These models not only guide the interpretation of experimental data but are also
fundamental to the computational simulation we perform. We use Python to model and
simulate the velocity redistribution, allowing for detailed analysis and visualization of the
physical processes involved. The results of these simulations will be crucial for validating
our theoretical models and for a deeper understanding of the behavior of cesium atoms
under experimental conditions. With this, we hope to make a significant contribution to
the understanding and manipulation of excited atoms in future experiments.
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5 DESCRIPTION OF THE ATOMIC SYSTEM AND EXPERIMENTAL SETUP

This chapter provides a detailed exploration of the atomic system and experimen-
tal setup used in the study of velocity redistribution of excited atoms and cesium Rydberg
atom spectroscopy. Understanding the complexities of the cesium atomic system and
its energy levels (Section 5.1), as well as examining the influence of pressure effects on
cesium atomic behavior (Section 5.2).

Rydberg states, characterized by their high principal quantum numbers and
unique spectroscopic schemes (Section 5.3), are the central focus for studying atomic
interactions and sub-Doppler level transitions. The experimental setup (Section 5.4),
meticulously designed and detailed, is essential for conducting precise measurements
and maintaining controlled data acquisition environments. Specific aspects such as
thickness measurement techniques (Section 5.4.1) and frequency scale calibration
methods (Section 5.5) are discussed to ensure the reproducibility of experimental results.
This chapter establishes a solid foundation for subsequent analyses, emphasizing the
importance of each component in advancing our understanding of atomic dynamics and
spectroscopic techniques in Rydberg atoms.

5.1 CESIUM ATOMIC SISTEM AND LEVELS

Alkali metals in their ground state have a closed shell, with only one valence
electron in the outermost electron shell. Although alkali metals are multi-electron atoms,
with appropriate approximations, we can treat the Hamiltonian in an approximate manner,
as if they were single-electron atoms. Since the nucleus is composed of closed shells, it
does not contribute to the orbital angular momentum of the atom, leaving only the orbital
angular momentum of the single outer electron. The state of this electron is determined
by its orbital angular momentum l and its spin angular momentum s, which couple to
form the total angular momentum of the electron j.

Thus, the contribution to the total electronic angular momentum comes from the
atom’s outermost shell; the total orbital and spin angular momenta are given by L = l

and S = s, and the total angular momentum for all electrons is given by J = j. The
orientation of S with respect to L defines the spin-orbit interaction Vso = AL · S, and the
different energy states correspond to different values of J . This state splitting caused
by the spin-orbit interaction results in the fine structure of the atom. The LS coupling is
valid if the spin-orbit interaction is small compared to the separation of the energy levels.

The structure of alkali metals becomes a bit more complex when we consider
the interaction of the nuclear spin, denoted by I, with the total angular momentum of
the electron J . The coupling of these angular momenta gives rise to a new energy
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level splitting, called hyperfine coupling. The total angular momentum of the atom is
F = I + J , with values |J − I| ≤ F ≤ J + I. Different values of F for the same values of
I and J are shifted by the interaction AI · J between the nuclear spin and the electronic
angular momentum. The resulting energy structure is known as hyperfine structure (hfs),
and is generally smaller than the fine structure due to the smaller nuclear magnetic
moment. Cesium is an alkali metal that has 55 electrons, of which only one is in its
outermost shell (Steck, 2003). According to Pauli’s rule, these electrons are distributed
as follows:

1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p6 5s2 4d10 5p6 6s1 (135)

In the ground state, we have l = 0, which together with the spin angular momen-
tum s = 1/2, according to the addition of angular momentum, results in the quantum
number j = 1/2, identifying the 62S1/2 level. For the first excited state, we have l = 1 and
s = 1/2, corresponding to j = 1/2 and j = 3/2. Thus, the first excited 6p state of cesium
is composed of the states 62P1/2 and 62P3/2, forming two lines for optical excitation that
define the fine structure of cesium:

D1 Line : 62S1/2 → 62P1/2 (136)

D2 Line : 62S1/2 → 62P3/2 (137)

Each of these lines has its own hyperfine structure. In the case of cesium, the
D1 line corresponds to a wavelength of approximately 894 nm and the D2 line to
approximately 852 nm (Steck, 2003). In this work, the experiment is performed on the
D1 line, which has a hyperfine structure with closed transitions due to electric dipole
selection rules. In figure 20, we schematically show the D1 line of cesium along with its
hyperfine structure.
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Figure 20 – Cesium D1 transition hyperfine structure, with frequency splittings between
the hyperfine energy levels.

Soucer: Steck, 2003.

5.2 PRESSURE EFFECTS

Cesium vapor is typically used in atomic spectroscopy experiments in low-
pressure cells, where a small portion of cesium under the given conditions results
from the evaporation of a small piece of cesium. Under the above-mentioned conditions,
less than 1 mTorr, cesium vapor can be considered a nearly ideal gas, meaning the
thermodynamic equation PV = nRT is valid, where n is the number of moles of gas.
However, in the cells, there is some non-evaporated cesium, meaning it remains in the
liquid or solid state (Stone et al., 1966). Thus, the number of atoms is also a function
of temperature so that the vapor pressure balances the surface pressure of the non-
evaporated cesium. For cesium atoms, the pressure is a function of temperature, given
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empirically by (Steck, 2003):

log10 Pv = 2.881 + 4.711− 3999

T
(liquid phase) (138)

log10 Pv = 2.881 + 4.165− 3830

T
(solid phase) (139)

where the pressure P is given in mTorr and the temperature T in Kelvin, with the phase
change occurring at 28.44°C as observed in figure 21.

Figure 21 – Vapor pressure of cesium from equations 138 and 139.

Soucer: The Author, 2024.

In addition, in figure 22 we also plot from the equations 138 and 139 the density
in units of atom/cm−3, as a function of the temperature in ◦C for the liquid and solid
phases of cesium.
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Figure 22 – Vapor pressure of cesium from equations 138 and 139.

Soucer: The Author, 2024.

5.3 RYDBERG STATES AND SPECTROSCOPIC SCHEME

In cesium atoms, Rydberg states play a pivotal role in advancing our understan-
ding of quantum mechanics and atomic interactions. The figure below delineates the
energy levels of cesium that are particularly relevant to our investigations into these
intriguing Rydberg states. The figure 23 shows the energy levels of cesium relevant to
our experiments: the ground state Cs(6S1/2), the first excited state Cs(6P3/2), and all
accessible Rydberg states Cs(nS1/2, nD3/2).

The ground state of cesium, Cs(6S1/2), has two hyperfine components, F = 3 and
F = 4, which are separated by approximately 9.19 GHz (Steck, 2003). Optical pumping
is used to selectively transfer atoms from one hyperfine component, typically F = 3, to
an excited state, Cs(6P1/2), by driving the transition 6S1/2(F = 3) → 6P1/2(F = 4). This
process involves using resonant light to preferentially populate certain atomic states,
making optical pumping a key technique for preparing atoms in specific quantum states.
Once in the excited state, collisions can redistribute the population among the hyperfine
components of the 6P1/2 state, which are separated by 1.17 GHz.

Consequently, when probing Rydberg states from 6P1/2, resonances for both
hyperfine components (F=3 and F=4) are observed, and the separation between the
hyperfine components of nS1/2 and nD3/2 levels is within a few MHz (Steck, 2003). To
achieve Rydberg states, it is necessary to use a pumping beam (894 nm) and a probe
beam (507 - 513 nm). In our study, we used the probe beam at 512 nm for the state
15D3/2 and 513 nm for 16S1/2.
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Figure 23 – Step-wise excitation scheme for probing Rydberg state. Pumping from
6S1/2(F = 3) → 6P1/2(F = 4) at 894 nm and probing 6P1/2(F = 4, 3)− →
nS1/2, nD33/2(n = 15− 18) at 507 - 513 nm.

Soucer: The Author, 2024.

Considering the effects of the pumping laser frequency on sequential absorption
to the state 6S1/2 → 15D3/2, we measured the green laser absorption in the channel
Cs(6P1/2) → Cs(15D3/2) for all four possible pumping configurations (Figure 24). In
Figure 24, we observe that when the pumping laser addresses the same hyperfine
component for both the ground and excited states of cesium, i.e., for both 6S1/2(F =

4) → 6P1/2(F = 4) and 6S1/2(F = 3) → 6P1/2(F = 3), the population of the hyperfine
component of the excited state that is not directly pumped decreases, showing a dip.
Conversely, when the pumping laser addresses different hyperfine components, i.e., for
6S1/2(F = 4) → 6P1/2(F = 3) and 6S1/2(F = 3) → 6P1/2(F = 4), the population of the
excited hyperfine component that is not directly pumped increases, showing a peak.
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Figure 24 – Normalized 6P1/2 → 15D3/2 absorption spectra. The directly pumped hy-
perfine component always presents a peak at vz = 0 due to the velocity
selection of the pump. The hyperfine component that is not directly pumped
presents either a peak (for 6S1/2(F = 4) → 6P1/2(F = 4) or 6S1/2(F =
3) → 6P1/2(F = 3) pumping) or a dip (for 6S1/2(F = 4) → 6P1/2(F = 3) or
6S1/2(F = 3) → 6P1/2(F = 4) pumping).

Soucer: The Author, 2024.

5.4 EXPERIMENTAL SETUP

Our experimental setup (figure 25) consists of two diode lasers tuned to the
cesium D1 line, with a wavelength of 894 nm. Additionally, we use a green diode laser
from TOPTICA as the probe source. This laser has a wavelength range between 507
and 514 nm, with an output power of 25 mW at 512 nm. We employ a green laser tuned
to 512 nm for the 15D3/2 state and 513 nm for the 16S1/2 state.

The frequency scanning of the probe laser is performed by applying a voltage to
the piezoelectric actuator. Furthermore, we use a feed-forward technique (simultaneous
scanning of the laser current) to extend the laser’s continuous scanning range, avoiding
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Figure 25 – Simplified experimental setup with a volumetric cell and thincell

Soucer: The Author, 2024.

jumps, up to approximately 20 GHz. Lock-in amplifiers are used in our experiment, they
are equipped with low noise voltage sources and connected to beam controllers.

Figure 26 shows the cesium level scheme and the excitation scheme of the
lasers involved in our experiment. The first laser, referred to as "pump 1,"is tuned to
the transition 6S1/2 (F = 4) → 6P1/2 (F = 4). It is directed into the volumetric cell, where
its power of approximately 0.5 mW is applied. Additionally, approximately 4 mW from
"pump 1"is used for pumping in the thin cell. The second pumping laser, "pump 2", is
tuned to the transition 16S1/2 (F = 3) → 6P1/2 (F = 4) and is exclusively used in the thin
cell, operating at its full power of around 2 mW.

We utilize the portion of the beam that enters the volumetric cell to obtain a linear
absorption spectrum of the transition 6S1/2 (F = 4) → 6P1/2 (F = 4). Furthermore, this
beam serves as a frequency reference, as it is known from the literature (Rafac; Tanner,
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Figure 26 – Excitation scheme of the lasers involved in our experiment. Focusing on
pumps lasers that, despite having the same wavelength, are tuned to
different transition frequencies.

Soucer: The Author, 2024.

1998) that the sub-Doppler components of this transition are spaced by 1.168 GHz
(Steck, 2003). To measure the transmission of the green laser, both lasers undergo
amplitude modulation before reaching the cells containing cesium vapor. Precise tempe-
rature control is achieved using two ovens, maintaining stable temperatures for the cell
windows and cesium reservoir.

Figures 27 and 28, respectively illustrate the volumetric cell and the fine cell
and they dimensions , shape and temperature control. This configuration allows us to
investigate cesium atom properties in optical transitions with precision, while carefully
controlling temperature gradients. Specifically, for the volumetric cell, a 50°C temperature
difference between the reservoir and windows, whereas for the thin cell, a 100°C gradient
between temperatures is necessary.

The cell’s heating system is composed of two independent ovens: oven (1)
heats the main sapphire window, oven (2) controls the heating of the Cs reservoir and
maintains the thermal gradient between the surface and the reservoir.

The cell temperature is measured using two thermocouples: one is touching the
side of the sapphire window, the other is in contact with the cesium reservoir. The two
furnaces are identical having tungsten filaments as heating elements.

The thin cell (TC) has an biconcave shape as shown in figure 28 with YAG
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Figure 27 – Scheme of the cesium volumetric vapour cell. The cell is inside an oven
whose temperature we divide between T up and T down, where Tup >
Tdown, where Tdown is the temperature that governs the density of Cs.

Soucer: The Author, 2024.

windows. After pumping the cell, the YAG windows bend under atmospheric pressure.

Figure 28 – Shape of the cesium vapour thin cell.

Soucer: The Author, 2024.

This creates a thickness gradient within the cell ranging from ≈ 40nm in the
center as showed in figure 28, to ≈ 1000nm towards the edges of the cell. Different
thicknesses can be explored by translation the cell along the X-Y plane.

5.4.1 THICKNESS MEASUREMENT

Thin cell thickness is measured by Fabry-Pérot interferometry. Figure 30 illustra-
tes the path of a laser beam (1) passing through the cell with almost normal incidence.
The reflection from the thin cell is denoted as (3) (only one reflection beam is observed
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Figure 29 – Scheme of the cesium vapor thin cell.

Soucer: Dutta, 2023.

due to the parallelism between the two interfaces forming the cavity of the thin cell),
while the reflection from the first window is denoted as (2).

Figure 30 – Transmission path of a near normal incident beam (1) through the thin cell
which acts as a low finesse Fabry–Pérot interferometer. Beams indicated
by (2) and (3) are the reflected beams from the first window and the thin
cell respectively. α << 1 is the incident angle which has been deliberately
upscaled in the figure for convenience.

Soucer: The Author, 2024.

An experimental measurement using a single wavelength does not allow us to
uniquely determine the cell thickness (Dutier, 2003). To do this, we use 2 lasers of
different wavelengths for our thickness measurement (pump outside the resonance and
the green test beam). In figure 31 we show a typical measurement of cell thickness
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using two lasers (894 nm and 512 nm). The two lasers overlap and hit the same point
on the cell. Using two different wavelengths in figure 31, we obtain an overlap between
the two reflectances for a specific cell thickness of 583 ± 2,5 nm.

Figure 31 – Reflectance Rc as a function of cell thickness (d) (red line: 894 nm, green
line: 513 nm). The straight line shows the value of measured reflectance.
By using two different wavelengths, we can pinpoint the cell thickness to be
583 ± 2,5 nm.

Soucer: The Author, 2024.
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5.5 DATA ACQUISITION AND FREQUENCCY SCALE

In our scans, the data acquisition process is controlled by custom software on the
laboratory computer. The computer controls a voltage ramp applied to the piezoelectric
actuator of the scanning laser to sweep the laser frequency. For each frequency scan
point, input signals from photodetectors and lock-in amplifiers are digitized by a DAQ
(Data Acquisition) system and recorded on the computer. After a considerable number
of scans, these signals are processed in a Matlab program that utilizes the step-by-step
absorption signal 6S1/2 → nS1/2, nD3/2 to calibrate the frequency scale for each scan.
We use the linear absorption peaks of iodine to establish a frequency scale, as the
values of these peaks are known from the literature (Gerstenkorn; Luc, 1978). The
frequency values are described in the following Table 1 and 2.

Tabela 1 – Green frequency centered on the reference in MHz

16S Iodine absorption peak Green frequency
153 5.833813974624631e+08
154 5.833835379806132e+08
155 5.833869136436903e+08

Tabela 2 – Green frequency centered on the reference in MHz

15D Iodine absorption peak Green frequency
434 5.854420389100735e+08
435 5.854492219373672e+08
436 5.854585814579060e+08
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The figure 32 shows the linear absorption peaks of iodine for the state 16S1/2 with
the frequency values presented in Table 1. The Matlab program uses an interpolation
between voltage and MHz values from (Gerstenkorn; Luc, 1978) to create the frequency
scale for the volumetric cell.

Figure 32 – In black, linear absorption of iodine to the wavelength of 512.089 nm to
create a frequency scale and in red linear absorption of volumetric cell 6P1/2

→ 16S1/2.

Soucer: The Author, 2024.

However, for the thin cell, in addition to the iodine absorption peak values, a
second reference is used—the position of the peaks in the transition Cs5S1/2 (F = 4) →
Cs6P1/2 (F = 4). We know that the distance between these two peaks corresponds to
1.168 MHz.During the extended scan time, we verify that the experimental conditions re-
main unchanged, simultaneously monitoring the stabilization of pump laser frequencies,
cell temperature, and probe laser scanning.

5.6 SATURATED ABSORPTION

The analysis of the hyperfine splitting structure in atomic energy levels can be
performed without the Doppler broadening effect. This is achieved through saturated
absorption spectroscopy. The saturated absorption experiment, illustrated in figure 140,
is part of our experimental setup. Besides being crucial in spectroscopy experiments
with atomic vapors, it is through this technique that we stabilize our pump lasers at the
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correct frequency of the transitions. This is a technique of nonlinear interaction of laser
light with atoms to achieve spectra of atomic gases free from Doppler broadening and
is used in the investigation of sub-Doppler structures. The figure 33 below shows the
Doppler effect acting on an atom with a given velocity v:

Figure 33 – Saturated absorption scheme: an atom with velocity ν in a laboratory frame
experiences the Doppler Effect, because, when it is in motion, it "percei-
ves"the laser frequency differently.

Soucer: The Author, 2024.

For a specific frequency of the incident beam, considering propagation along the
"z"direction, the frequency "seen", by each atom varies and depends on the component
of its velocity in the direction of the beam:

f ′ = fL

(
1± vz

c

)
(140)

where fL is the frequency of the laser, vz is the component of the atom’s velocity in the
direction of the beam, the +/- signs are used depending on whether the atom’s movement
is counter-propagating or co-propagating with the incident beam, respectively, and c is
the speed of light in a vacuum. Quantitatively, we can analyze the saturated absorption
technique as follows: The Maxwell-Boltzmann distribution for the vz component of the
atom’s velocity in the direction of radiation propagation (??) is expressed as:

f ′dv =

(
1

u
√
π

)
· exp

(
−1

2
ν2zu

2

)
dν (141)

where,

u =

√
2kBT

M
(142)

It is the most probable velocity for atoms in atomic vapors, T is the temperature
in kelvin, kB = 1.380649× 10−23 is the Boltzmann constant in J/K, and M = 2.2× 10−25

is the atomic mass of Cs in kg. We use the saturated absorption to tune the LASER
frequency to one of the hyperfine transition frequencies of our atom. Basically, the
LASER adjusts its frequency around the hyperfine transitions of cesium in the D1 line,
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with a wavelength of 894 nm. For the LASER to excite the atoms from the ground state
to the excited state, it needs to be tuned to the desired transition, which we call being in
resonance.

In saturated absorption, two beams are incident in opposite directions in the
atomic vapor. One of the beams is called the strong beam (pump) and the other, weaker,
is called the probe beam. When the LASER frequency is equal to the atomic transition
frequency, both beams interact simultaneously with the same class of atoms with velocity
νz = 0. The strong beam saturates the atomic transition, reducing the number of atoms
with velocity νz = 0 in the ground state. Consequently, the absorption of the weak beam
decreases because the atoms have already been excited by the strong beam.

The absorption of the probe beam presents a Doppler-broadened profile, from
which a Lorentzian peak corresponding to the resonant frequency is subtracted. At this
frequency, the atoms absorb the strong beam while the weak beam is transmitted and
detected. Figure 34 illustrates the beam arrangement used in saturated absorption.

Figure 34 – Saturated Absorption Setup in our experiment, the arrows inside the cell
indicate the different velocities of atoms in atomic vapor. The strong beam
is indicated by the letter F and the weak beam indicated by the letter P.

Soucer: The Author, 2024.

We can conclude that Doppler broadening is generally the main contribution
to the observed line widths in atomic spectra, especially at room temperature. The
integration of all velocity classes results in the absorption coefficient:

κ(ω) =

∫
N(ν)σ(ω − kν) dν (143)

where σ(ω − kν) is the absorption cross-section and N(v) is the numerical density of
the atoms. At high intensities, the population difference between two levels is reduced
as the atoms are excited to the excited state. Thus, we have:

κ(ω) =

∫ +∞

−∞
[N1(ν)−N2(ν)]V |σabs(ω − kν)|dν (144)
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With N = N1 +N2 for a two-level system, where N1 is the atomic density in the
ground state and N2 is the atomic density in the excited state. In saturated absorption
spectroscopy, the quantity N1(v) − N2(v) is influenced by the interaction with a high-
intensity LASER beam. In our experimental setup we have two cells that are performing
this saturated absorption experiment. The detection of the weak beam transmission is
connected to a lock-in amplifier as shown so that we can lock the laser at the desired
transition. Our pump laser 1 is fixed at the transition 6S1/2(F = 4) → 6P1/2(F = 4) and
our pump laser 2 is fixed at the transition 6S1/2(F = 4) → 6P1/2(F = 3).
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6 EXPERIMENTAL STUDY OF VELOCITY REDISTRIBUTION IN EXCITED CESIUM
ATOMS VIA COLLISION AND INTERACTION OF RYDBERG ATOMS WITH NA-
NOMETRIC CELLS

Atomic and collision physics explores the interactions between atoms, ions, and
electrons (Bader; Essén, 1984), (Bartschat; Kushner, 2016). Among the phenomena of
interest in this field, one stands out: the redistribution of velocity for atoms in excited
states after collisions (Zielinska, 1985). This work aims to deepen our understanding of
this phenomenon by investigating the velocity redistribution of cesium atoms in excited
states through collisions (Keramati; Masters; Huennekens, 1988), (Carvalho et al.,
2021) and their interaction with cells of varying thickness (Andreeva et al., 2007). In
this chapter, we present experimental results obtained in two distinct configurations:
volumetric cells and nanometric cells. Our study focuses on cesium atoms and relevant
atomic transitions.

6.1 RESULTS VOLUMETRIC CELL

In the volumetric cell, we employed a semiconductor pumping laser with a
wavelength of 894 nm, tuned to the cesium D1 line (Steck, 2003). This allowed us to
investigate the following transitions:

• Transition between hyperfine states [F = 4 → F = 4]

• Transition between hyperfine states [F = 4 → F = 3]

• Transition between hyperfine states [F = 3 → F = 3]

• Transition between hyperfine states [F = 3 → F = 4]

The excited state populations were probed using green probe beams with wave-
lengths of 512 nm for state (15D3/2), and 513 nm for state (16S1/2). The results revealed
a sub-Doppler structure in the mentioned transitions, which varied with laser frequency
tuning. In addition, our results also vary according to cell temperature and pumping
beam power, as presented below.

6.1.1 PUMP POWER

With a focus on the variation of sub-Doppler structure, previously investigated
by (Mikhailov; Boudot; Brazhnikov, 2021), we also studied the hyperfine structure of
the D1 line when altering the pump beam power, as shown in Figure 35. The goal of
this experiment was to understand how the pump beam power influences the intensity
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and shape of the sub-Doppler structure. We performed linear absorption measurements
of cesium in the transition from 6S1/2 (F = 4) to 6P1/2 (F = 4) and 15D3/2, varying the
power of the pump beam at 894 nm, to observe how the intensity of the detected signal
varies as the pump power decreases.

Figure 35 – Linear absorption spectrum of cesium for the atomic transition from 61/2 (F
= 4) to 6P1/2 (F = 4) and to 15D3/2, varying the power of the pump beam
(894nm).

Soucer: The Author, 2024.

We chose to conduct this experiment in the 6S1/2 (F = 4) to 6P1/2 (F = 4)
configuration because the 4-4 configuration is well-known in the literature (Pitz, 2010)
and serves as a reference for frequency scaling in our thin cell experiments. By reducing
the pump beam power, we observed a decrease in signal intensity, as well as a reduction
in the second (rightmost) sub-Doppler component, shown in figure36.
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Figure 36 – Linear absorption spectrum of cesium for the atomic transition from 61/2 (F
= 3) to 6P1/2 (F = 4) and to 15D3/2, varying the power of the pump beam
(894nm).

Soucer: The Author, 2024.

Meanwhile, we also performed the same experiment in another configuration,
from 6S1/2 (F = 3) to 6P1/2 (F = 4) shown in the figure 36. In this case, we noticed
not only a decrease in signal intensity at the detector but also a significant change in
the first (leftmost) sub-Doppler component when we decreased the pump beam power.
Additionally, there was a shift in the Doppler broadening. To illustrate this, we include the
following figure 37 showing the normalized signals in the first sub-Doppler component,
highlighting the dependence of Doppler broadening on the pump beam intensity.
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Figure 37 – Linear absorption spectrum of Cesium for the atomic transition from
6S1/2(F = 3) to 6P1/2(F = 4) and to 15D3/2, varying the power of the
pump beam and normalized on de 1° subdoppler component

Soucer: The Author, 2024.

It is important to clarify that the signals observed in this work are averages
of multiple scans to reduce the amount of noise. When we significantly decreased
the pump beam power, the signal became very noisy. Even after adjusting electronic
parameters of the experimental system, such as gain, time constant, or phase, it was
challenging to separate the signal from the noise. Therefore, our results are limited to a
pump power of 0.07 mW.
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6.1.2 VARYING THE DENSITY

We also investigated effects related to collisional shift and Doppler broadening
in the transition from the state (6S1/2)((F = 4)) to the state (6P1/2)((F = 4)), and
subsequently to the states (16S1/2) and (15D3/2). For this investigation, we conducted
measurements in the volumetric cell by varying the cell’s temperature and, consequently,
the density. Our results are given in pressure units (Gallagher, 1994); however, for
conversion, the temperature was varied between 423K and 493K, increasing by 10K
increments. Similar to previous results, we averaged multiple scans to reduce noise
for each chosen experimental configuration, and all data points were placed on our
frequency scale. Figure 38 illustrates how the signal intensity varies with atom density
in the volumetric cell during the transition from (6S1/2)((F = 4)) to (6P1/2)((F = 4)), and
subsequently to (16S1/2)."

Figure 38 – Linear absorption spectrum of Cesium for the atomic transition from 6S1/2

(F = 4) to 6P1/2 (F = 4) and to 16S1/2, at high densities and varying the
Temperature of the Volumetric Cell.

Soucer: The Author, 2024.
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Additionally, we observed effects related to a collisional shift during the transition
from state (6S1/2) (F = 4) to state (6P1/2) (F = 4) and subsequently to state (16S1/2). The
Doppler broadening was also evident in this context. In that experiment, we investigated
the effects of cesium atom pressure within a volumetric cell. These effects are related
to atom interactions and their influence on spectral lines.

The figure 39 shows the collisional broadening, that occurs when atoms collide
during their interaction with light (Chen; Phelps, 1968). These collisions alter the obser-
ved spectral line width. In our measurements, we found a collisional broadening value
of 3.9 GHz/Torr. This means that the spectral line width is increased due to cesium
atom collisions. Understanding this phenomenon is crucial for spectral resolution and
measurement precision in atomic systems.

Figure 39 – collisional broadening as a function of the caesium pressure for the transition
to (6S1/2) (F = 4) to state (6P1/2) (F = 4) and subsequently to state (16S1/2)

Soucer: The Author, 2024.
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On the other hand, the figure 40 shows the collisional shift, that one refers to the
displacement of the central frequency of the spectral line caused by atom collisions. We
observed a shift of -450 MHz/Torr.

Figure 40 – Collisional shift as a function of the cesium pressure for the transition to
(6S1/2) (F = 4) to state (6P1/2) (F = 4) and subsequently to state (16S1/2)

Soucer: The Author, 2024.

This effect is essential for calibrating measurement systems and compensating
for deviations caused by collisions. The redshift (lower frequency) is a characteristic
feature of this phenomenon (Garrett; Ch’en; Looi, 1967).
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For the transition from 6S1/2 (F = 4) to 6P1/2 (F = 4) and to 15D3/2, we also
performed measurements varying the temperature of the cell. The goal was to observe if
the collisional shift would appear and to investigate changes in the behavior of collisional
broadening. We conducted measurements by varying the cell temperature at 430K,
450K, 470K, 480K, and 490K in the volumetric cell. This result is shown in the Figure 41

Figure 41 – Linear absorption spectrum of Cesium for the atomic transition from
6S1/2(F = 4) to 6P1/2(F = 4) and to 15D3/2, at high densities and varying
the Temperature of the Volumetric Cell.

Soucer: The Author, 2024.
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Meanwhile, the behavior we observe here is different from what occurred for
the 16S1/2 state. We do not observe the collisional shift, but it is possible to visualize a
significant difference graphically in the Doppler increase with increasing pressure, as
shown in Figure 42.

Figure 42 – Collisional broadneing as a function of the caesium pressure for the tran-
sition to (6S1/2) (F = 4) to state (6P1/2) (F = 4) and subsequently to state
(15D3/2).

Soucer: The Author, 2024.

The increase in colisional broadening is shown in Figure 42 for the state 15D3/2,
where we obtain a value of 3.20 MHz/mtorr. This indicates that the particles are moving
in a way that magnifies the spectral lines. This enlargement can be caused by the
thermal movement of the particles (temperature increase) and by frequent collisions
between them (pressure increase). We were not able to visualize the shift for the 15D3/2

state, and an update to our program would be necessary to be able to visualize the shift
that exists in this transition, which is a motivation for some ongoing work in the LPL
OCR research group.
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6.1.3 VARYING THE FREQUENCY

We also conducted an experiment with the goal of understanding the nature of
sub-Doppler structure based on the tuned frequency of the pumping laser. The idea
behind this experiment was to visualize the signal when the pumping laser is precisely at
the 4-4 transition, both with higher and lower frequencies. To achieve this, we performed
a scan of saturated cesium absorption using only the pump laser to visualize the two
transitions, 4-3 and 4-4, as shown in figure 43, in order to determine the voltage range.
Next, we conducted another scan, centering on the 4-4 resonance, allowing us to lock
the laser at that frequency.

Figure 43 – Saturated absorption spectrum of Cesium to create a frequency scale,
where we visualize the 6S1/2(F = 4) to 6P1/2(F = 3) transition on the left
and the S1/2(F = 4) to 6P1/2(F = 4) transition on the right

Soucer: The Author, 2024.
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Subsequently, we performed a scan with the green laser, but this time we modified
the pump frequency by directly adding voltage to the laser controller. This adjustment
either increased or decreased the frequency of the pump beam. During the scan shown
in figure 44, where we visualize only the 6S1/2(F = 4) to 6P1/2(F = 4) transition in the
cesium saturated absorption, we observed an inverse proportionality between the pump
frequency and voltage. To convert voltage to frequency, we established a voltage scale,
leveraging our knowledge of the voltage-to-GHz conversion for the two transitions.

Figure 44 – Saturated absorption spectrum of Cesium to create a frequency scale,
where the laser is tuned at transition 6S1/2(F = 4) to 6P1/2(F = 4).

Soucer: The Author, 2024.
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Our findings revealed that every 1V change in the controller corresponds to a
67.25 MHz detuning of the pump beam. Using the following equation 145, with the
already known wavelength values of the probe beam (green) and the pump beam
(Infrared) we estimated the value of the shift (∆probe) in our green beam based on the
shift (∆pump) applied to the probe beam.

∆probe =
∆pump × λpump

λprobe
(145)

As a result, we observed a shift in the probe beam of 344 MHz when the pumping
beam shift was 354MHz (ω + δ), and a shift of 340MHz in the probe beam when the
pumping beam shift was -338MHz (ω − δ). These results are graphically presented in
figure 45

Figure 45 – Linear absorption spectrum of Cesium for the atomic transition normalized
6P1/2− > 15D3/2 absorption spectra for Pump frequency, on the pump
frequency on resonance (Black) when ωIR = ω0, pump frequency ωIR = ω0-
δ (Blue) and pump frequency ωIR = ω0+δ (Red).

Soucer: The Author, 2024.
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6.2 RESULTS THINCELL

Finally, we explored the Rydberg transition from 6P1/2 → 15D3/2 in a nanometer-
thick cell with thickness ranging from 257 nm to 640 µm. The experimental setup was
described in Chapter 4, and we performed our spectroscopic measurement on the
transmitted beam of the thin cell.

Biplab Dutta’s work (DUTTA, 2023) presented preliminary measurements that
focused on probing the transition from 6P1/2 → 16S1/2 (at 513 nm). In our measurements,
we probed the transition from 6P1/2 → 15D3/2 (at 512 nm). Pump lasers 1 and 2 at 894
nm were amplitude-modulated (AM) and locked to transitions (F = 4 → F = 4) with
pump 1 and (F = 4 → F = 3) with pump 2, while the probe beam was directed to the
15D3/2 state (with a wavelength of 513 nm).

In figure 46, we present all the transmission spectra of thin cells 6P1/2 → 15D3/2

obtained and not normalized. With decreasing cell thickness (L), we do not observe a
shift towards red or blue atomic resonance, but the homogeneous broadening of line
shapes is clearly visible.

Figure 46 – Signal not normalized 6P1/2 → 15D3/2 thin cell transmission spectra for
various cell thicknesses L at the same cesium vapour pressures

Soucer: The Author, 2024.

From a thickness of 385 nm at 240°C, in orange on the figure 46, the signal
intensity becomes very small. Several measurements were taken at each thickness to
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present the average of various scans at the same temperature and thickness. However,
we chose to present the smaller thicknesses separately in figure 47, where we show the
transmitted signal of the thin cell with thicknesses of 385 nm, 300 nm, and 257 nm. For
the smaller thicknesses, we also did not observe the collisional shift, only the change in
the generated signal intensity, in the shape, and broadening of the transition.

Figure 47 – Signal not normalized 6P1/2 → 15D3/2 thin cell transmission spectra for
spectrum for smaller cell thicknesses L at the same cesium vapour pressu-
res.

Soucer: The Author, 2024.
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In measurements with the volumetric cell, we observed the contribution of two
components. However, in the volumetric cell, the contribution of the second hyperfine
component is strongly suppressed. (DUTTA, 2023) managed to observe the contribution
of the second (small) component in the 6P1/2 → 16S1/2 transition for large cell thicknes-
ses. This likely occurs because collisions with cell walls dominate interatomic collisional
redistribution. However, we did not observe this for the 6P1/2 → 15D3/2 transition, sug-
gesting that the D orbital is less sensitive to interactions between wall collisions and
interatomic collisional redistribution.
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7 CONCLUSION

This dissertation presents a comprehensive investigation into two key areas
of contemporary optical physics: the theoretical and computational analysis of light
propagation in nonlinear photonic structures, and the experimental study of velocity
redistribution in excited cesium Rydberg atoms. These two areas are tackled in distinct
yet complementary parts of the work, each offering significant insights into different
aspects of light-matter interaction.

The first part of the work, spanning Chapters 1 to 3, focuses on the theoretical
foundations and simulation of light propagation in Kerr-type nonlinear media. We began
with a detailed review of the underlying principles of light manipulation, rooted in
Maxwell’s equations and the Helmholtz equation, which govern electromagnetic wave
propagation. A significant portion of this part dealt with the interaction of light with
nonlinear media, where the refractive index is dependent on light intensity.

The Kerr effect, a nonlinear optical phenomenon, plays a central role in our
analysis. Through the application of the Split-Step Beam Propagation Method (SSBPM),
we simulated the behavior of Gaussian beams in Kerr media. The simulations illustrated
key phenomena such as self-focusing, where light beams tend to converge due to an
intensity-dependent increase in refractive index, and self-defocusing, where beams
diverge under similar conditions with opposite refractive index variations. These effects
were rigorously analyzed, and the results showed how they can be harnessed to control
beam propagation in nonlinear photonic structures.

One important contribution of this theoretical work is the demonstration of how
photonic crystals, with periodic refractive index modulation, can be designed to mani-
pulate light in highly controlled ways. These insights are crucial for developing future
photonic devices such as waveguides, filters, and resonators that rely on nonlinear
effects to optimize their performance. The computational simulations provide valuable
predictions on how these structures can be optimized for specific applications, such as
optical communications and all-optical switching.

The second part of the dissertation, covered in Chapters 4 to 6, shifts the focus to
an experimental investigation of the velocity redistribution in excited cesium atoms using
atom Rydberg spectroscopy. This part of the work was done in collaboration with the
OCR research group at LPL, and in these chapters we provide a detailed examination
of the dynamics of atomic excitation and the interaction between cesium atoms and
external electromagnetic fields.

Rydberg atoms, known for their exaggerated atomic properties such as large
orbital radii and extreme sensitivity to external fields, were central to our experimental
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approach. By using cesium atoms confined in both volumetric and nanometric-thin cells,
we investigated the effects of velocity redistribution during atomic collisions and the
influence of these interactions on the observed spectral lines. The experimental setup,
designed to probe transitions in cesium Rydberg states, enabled us to measure these
effects with high precision, allowing for a direct comparison with theoretical models.

One of the key findings of this experimental work is the observation of how collisi-
ons between cesium atoms lead to velocity redistribution, which in turn affects the width
and shift of spectral lines. This phenomenon is especially significant in environments
where atom-atom interactions are enhanced, such as in confined geometries or at high
atomic densities. The experimental results from both volumetric and thin cells showed
that changes in experimental parameters—such as laser power, atomic density, and
laser detuning—affect the degree of velocity redistribution. These findings contribute
to a deeper understanding of the role of collisions and Doppler effects in Rydberg
spectroscopy, and they offer valuable experimental data that can be used to refine
theoretical models of light-matter interaction.

This work successfully integrates both theoretical and experimental approaches
to provide a multifaceted exploration of nonlinear optical effects and atomic spectroscopy.
The theoretical work on light propagation in Kerr-type media and photonic structures
offers new perspectives on how light can be controlled and manipulated in nonlinear
environments, with potential applications in photonic devices and optical communication
systems.

On the experimental side, the work on cesium Rydberg atoms presents novel
insights into velocity redistribution mechanisms, contributing to the broader field of
atomic physics and spectroscopy. The experimental findings have implications for un-
derstanding fundamental processes in light-matter interaction, particularly in confined
atomic systems. This knowledge is not only crucial for applications in quantum technolo-
gies, such as quantum information processing, but also for the development of highly
sensitive sensors based on Rydberg atoms.

This work makes significant contributions to two distinct yet interrelated areas
of optical physics. The theoretical and simulation-based studies provide a framework
for future developments in photonic technologies, while the experimental investigations
offer valuable insights into atomic behavior in Rydberg states. Together, these two
parts form a cohesive body of work that enhances our understanding of both nonlinear
optics and atomic spectroscopy, with promising implications for future research and
technological applications in fields such as quantum optics, optical communications,
and spectroscopy.
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