DISCIPLINA(PPEF0016): ÓTICA INTEGRADA E FOTÔNICA					
OBRIGATÓRIA	CARGA HORÁRIA				
	TEÓRICA	PRÁTICA	EAD/SEMIPRESENCIAL	TOTAL	CRÉDITOS
() SIM (X) NÃO	60	-	-	60	4
PRÉ-REQUISITO: INTRODUÇÃO A MECÂNICA QUÂNTICA.					
ÁREA DE CONCENTRAÇÃO:		(X)OPTOELETRÔNICA (X)MATERIAIS			
NÍVEL: MESTRAD	0				

EMENTA:

Teoria básica de eletromagnetismo; Guias de onda; Cristais fotônicos; Dispositivos optoeletrônicos. Introdução à Fotônica Computacional. Técnicas de Fabricação e de Medidas em Optoeletrônica.

CONTEÚDO PROGRAMÁTICO:

- TEORIA BÁSICA DE ELETROMAGNETISMO: Equações de Maxwell, Propagação de ondas eletromagnéticas, Potência e dissipação do campo eletromagnético, Modos do campo eletromagnético em uma caixa.
- GUIAS DE ONDA: Guias de onda planares, Guias de onda tridimensionais e métodos de análise, Acoplamento em guias de onda.
- CRISTAIS FOTÔNICOS: redes periódicas de Bragg. Fibras cristalinas fotônicas.
- DISPOSITIVOS OPTOELETRÔNICOS: Lasers, Fotodetectores, Modulação de dispositivos optoeletrônico.
- INTRODUÇÃO À FOTÔNICA COMPUTACIONAL: Método de propagação de feixes. Aproximação do envelope variando lentamente, Aproximação paraxial e de grandes ângulos, Discretização pelo método dos elementos finitos.

BIBLIOGRAFIA BÁSICA:

- 1. Hiroshi Nishihara, Optical Integrated Circuits, McGraw-Hill, 1989.
- 2. Donald L. Lee, Electromagnetic Principles of Integrated Optics, John Wiley & Sons, 1986.
- 3. Shun Lien Chuang, Physics of Optoelectronic Devices, Wiley-Interscience, 1995.
- 4. M. J. Adams, Introduction to Optical Waveguide. John Wiley & Sons Inc, 1981.
- 5. J. D. Joannopoulos, Photonic Crystals: Molding the Flow of Light, Princeton U Press, 1995.

BIBLIOGRAFIA COMPLEMENTAR:

- 1. K. Sakoda, Optical Properties of Photonic Crystals, Springer. 2004.
- 2. R. P. Khare, Fiber Optics and Optoelectronics. Oxford Univ Press. 2004.